PPG Signal Analysis: An Introduction Using MATLAB

دانلود کتاب PPG Signal Analysis: An Introduction Using MATLAB

38000 تومان موجود

کتاب تجزیه و تحلیل سیگنال PPG: مقدمه ای با استفاده از MATLAB نسخه زبان اصلی

دانلود کتاب تجزیه و تحلیل سیگنال PPG: مقدمه ای با استفاده از MATLAB بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب PPG Signal Analysis: An Introduction Using MATLAB

نام کتاب : PPG Signal Analysis: An Introduction Using MATLAB
عنوان ترجمه شده به فارسی : تجزیه و تحلیل سیگنال PPG: مقدمه ای با استفاده از MATLAB
سری :
نویسندگان :
ناشر : CRC Press
سال نشر : 2021
تعداد صفحات : [298]
ISBN (شابک) : 2018018138 , 9780429831126
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 14 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
List of Figures and Tables
Preface
Acknowledgments
The Author
How to Use This Book?
Chapter 1: Math Foundations
1.1 Learning Objectives
1.2 Scalars
1.2.1 Scalar Mathematical Operations
1.2.2 Assigning Scalar Values
1.3 Vectors
1.3.1 Vector Mathematical Operations
1.3.2 Assigning Vector Elements
1.3.3 Assigning Vector Elements Using a Function
1.3.4 Assigning Vector Elements Using a Colon (:)
1.3.5 Addressing Vector Elements
1.3.6 Increasing the Vector Size
1.4 Matrices
1.4.1 Matrix Mathematical Operations
1.4.2 Assigning Matrix Elements
1.4.3 Assigning Matrix Elements Using a Function
1.4.4 Addressing Matrix Elements
1.5 Relational Operators
1.6 NaN
1.7 Strings
1.8 Structures
1.9 Cell
1.10 Import/Export Data
1.11 Workspace User Input
Chapter 2: Photoplethysmogram Signals
2.1 Learning Objectives
2.2 Background
2.3 Oxygen Transport
2.4 Terminologies and Acronyms
2.4.1 DVP
2.4.2 PTG
2.4.3 SDPTG
2.4.4 APG
2.4.5 SDDVP
2.4.6 Terminology Selection and Search Strategy
2.4.7 Standard Acronyms
2.5 Why PPG Signal?
2.6 Plethysmography Types
2.7 Measuring Sites
2.8 Modes of PPG Measurement
2.8.1 Transmissive Mode
2.8.2 Reflective Mode
2.9 Calculation of Oxygen Saturation
2.10 Simulation of PPG Signal Using Sinusoids
2.11 Simulation of PPG Signal using Two Gaussian Functions
2.12 PPG Sensors
2.12.1 Probe-Based PPG Signals
2.12.2 Video-Based PPG Signals
2.13 Current Challenges
2.13.1 Powerline Interference
2.13.2 Sudden Amplitude Change
2.13.3 Motion Artifact
2.13.4 Multi-Parameter Systems
2.13.5 Research Design
2.14 Summary
Chapter 3: Visualization of PPG Signals
3.1 Learning Objectives
3.2 Plot
3.3 Bar
3.4 Area
3.4.1 Histogram
3.5 Periodogram
3.6 Spectrogram
3.6.1 Wavelets
3.7 Eventogram
3.8 Discussion
3.9 Summary
Chapter 4: Pre-processing of PPG Signals
4.1 Learning Objectives
4.2 Filter Types
4.2.1 Moving Average (MA) Filter
4.2.2 Butterworth Filter (Butter)
4.2.3 Chebyshev Filter (Cheby I and Cheby II)
4.2.4 Elliptic Filter (Ellip)
4.2.5 General Comment
4.3 Filter Design
4.3.1 Low-Pass Filter
4.3.2 High-Pass Filter
4.3.3 Band-Pass Filter
4.3.4 Band-Stop Filter
4.4 Convolution
4.4.1 Improving PPG Beat Quality
4.4.2 Filtering PPG Signal
4.5 Cross-correlation
4.5.1 Filtering One PPG Beat
4.5.2 Filtering PPG Signal Quality
4.6 Summary
Chapter 5: Signal Quality Assessment
5.1 Learning Objectives
5.2 Introduction
5.3 Annotation
5.4 Signal Quality Indices
5.4.1 Perfusion ( P SQI)
5.4.2 Skewness (S SQI):
5.4.3 Kurtosis (K SQI)
5.4.4 Entropy (E SQI)
5.4.5 Zero Crossing Rate (Z SQI)
5.4.6 Signal-to-Noise Ratio (N SQI)
5.4.7 Matching Systolic Detectors (M SQI)
5.4.8 Relative Power (R SQI)
5.5 Summary
Chapter 6: PPG Feature Extraction
6.1 Learning Objectives
6.2 Overview of PPG Features
6.3 Features of PPG Waveforms
6.3.1 Systolic Amplitude
6.3.2 Pulse Width
6.3.3 Pulse Area
6.3.4 Peak-to-Peak Interval
6.3.5 Pulse Interval
6.3.6 Augmentation Index
6.3.7 Large Artery Stiffness Index
6.4 Features of VPG Signals
6.4.1 Diastolic Point
6.4.2 Δ T Calculation
6.4.3 Crest Time Calculation
6.5 Features of APG Signals
6.5.1 a, b, c, d, and e Waves
6.5.2 Ratio b / a Index
6.5.3 Ratio c / a Index
6.5.4 Ratio d / a Index
6.5.5 Ratio e / a Index
6.5.6 Ratio ( b  −  c  −  d  −  e)/ a Index
6.5.7 Ratio ( b  −  e)/ a Index
6.5.8 Ratio ( b  −  c  −  d)/ a Index
6.5.9 Ratio ( c  +  d  −  b)/ a Index
6.5.10 aa Interval
6.5.11 APG Beat Waveform
6.5.12 Segment of APG Signal
6.5.13 Chaos Attractor
6.5.14 MATLAB Functions for Features Extraction
6.5.15 MATLAB Code for Extracting 125 PPG Features
6.5.15.1 Time Span
6.5.15.2 Features of PPG Amplitude
6.5.15.3 Features of VPG and APG
6.5.15.4 Waveform Area
6.5.15.5 Power Area
6.5.15.6 Ratio
6.5.15.7 Slope
6.5.15.8 Code for PPG Feature Calculation
6.5.15.9 Heart Rate Variability
6.5.15.10 Time Domain Methods
6.5.15.11 Frequency Domain Methods
6.5.16 Nonlinear Methods
6.5.16.1 Poincaré Plot
6.5.16.2 Approximate Entropy and Sample Entropy
6.5.17 Discussion
6.6 Summary
Chapter 7: A Generic Method for Event Detection
7.1 Learning Objectives
7.2 Introduction
7.3 Data Used
7.4 TERMA Framework
7.4.1 Prior Knowledge
7.4.2 Bandpass Filter
7.4.3 Signal Enhancement
7.4.4 Generating Blocks of Interest
7.4.5 Thresholding
7.4.6 Detecting Event Peak
7.5 Results
7.5.1 Training Results
7.5.2 Testing
7.6 Discussion
7.6.1 Frequency Band Choice
7.6.2 Window Size Choice
7.6.3 Offset β Choice
7.6.4 Battery-Driven Devices
7.6.5 Optimization Step
7.6.5.1 Exhaustive Search
7.6.5.2 Gradient-Based Search
7.6.5.3 Parallel Execution
7.7 Significance of TERMA
7.8 Summary
Chapter 8: Feature Selection
8.1 Learning Objectives
8.2 Feature Normalization
8.2.1 Linear Normalization
8.2.2 Nonlinear Normalization
8.3 Criteria for Selection and Evaluation
8.3.1 Independent Student’s t -test
8.3.2 Dependent Samples (Paired) t -test
8.3.3 Receiver Operating Characteristic Curve
8.3.4 Analysis of Variance (ANOVA)
8.3.5 Fisher’s Measure
8.3.6 Divergence Measure
8.3.7 Bhattacharyya’s Measure
8.3.8 Scatter Measure
8.4 Optimal Feature(s)
8.4.1 Individual Feature Selection
8.5 Search Method
8.5.1 Optimal Search
8.5.2 Suboptimal Search
8.6 Summary
Chapter 9: Identifying Adverse Events
9.1 Learning Objectives
9.2 Minimum Distance Classifier
9.3 Bayes Classifier
9.4 Competitive Neural Network
9.5 Discriminant Analysis
9.6 Other Classifiers
9.7 Classification Example using Classical Machine Learning Methods
9.8 Classification Example using Deep Learning
9.9 Effectiveness Evaluation
9.9.1 K-Fold Cross Validation
9.9.2 Class Imbalance
9.9.3 Confusion Matrix
9.9.4 Sensitivity versus Specificity
9.10 Summary
Chapter 10: Application of PPG to Global Health
10.1 Learning Objectives
10.2 Introduction
10.3 Overview
10.4 Simplicity
10.5 Mining
10.6 Connection
10.7 Reliability
10.8 Affordability
10.9 Scalability
10.10 Noncommunicable Disease Case Studies
10.10.1 Case I: Detection of Heat Stress in a Changing Climate
10.10.1.1 Simplicity
10.10.1.2 Mining
10.10.1.3 Connection
10.10.1.4 Reliability
10.10.1.5 Affordability
10.10.1.6 Scalability
10.10.2 Case II: Prediction of Adverse Outcomes Related to Preeclampsia using SpO2
10.10.2.1 Simplicity
10.10.2.2 Mining
10.10.2.3 Connection
10.10.2.4 Affordability
10.10.2.5 Scalability
10.10.3 Case III: Hypertension Risk Stratification
10.10.3.1 Simplicity
10.10.3.2 Mining
10.10.3.3 Connection
10.10.3.4 Affordability
10.10.3.5 Scalability
10.11 User Performance
10.12 Summary
Chapter 11: Available PPG Databases
11.1 Fingertip PPG from Hypertensive Subjects
11.2 Fingertip PPG from an Intensive Care Unit
11.3 Wrist PPG During Exercise
11.4 Fingertip PPG and Respiration
11.4.1 The University of Queensland Vital Signs Dataset
11.4.2 BioSec.Lab PPG Dataset
11.4.3 Vortal Dataset
11.5 Summary
References
Index




پست ها تصادفی