Practical Data Analysis (Python, MongoDB, Apache Spark)

دانلود کتاب Practical Data Analysis (Python, MongoDB, Apache Spark)

43000 تومان موجود

کتاب تجزیه و تحلیل داده های عملی (Python، MongoDB، Apache Spark) نسخه زبان اصلی

دانلود کتاب تجزیه و تحلیل داده های عملی (Python، MongoDB، Apache Spark) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.

امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3

توضیحاتی در مورد کتاب Practical Data Analysis (Python, MongoDB, Apache Spark)

نام کتاب : Practical Data Analysis (Python, MongoDB, Apache Spark)
ویرایش : 2
عنوان ترجمه شده به فارسی : تجزیه و تحلیل داده های عملی (Python، MongoDB، Apache Spark)
سری :
نویسندگان : ,
ناشر : Packt Publishing
سال نشر : 2016
تعداد صفحات : 330
ISBN (شابک) : 1785289713 , 9781785289712
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 41 مگابایت

بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

فهرست مطالب :

About the Authors
About the Reviewers
Table of Contents
Chapter 1: Getting Started
[Computer science]
Computer science
Artificial intelligence
Machine learning
Knowledge domain
Data, information, and knowledge
Inter-relationship between data, information, and knowledge
The nature of data
The data analysis process
The problem
Data preparation
Data exploration
Predictive modeling
Visualization of results
Quantitative versus qualitative data analysis
Importance of data visualization
What about big data?
Quantified self
Sensors and cameras
Social network analysis
Tools and toys for this book
Why Python?
Why mlpy?
Why D3.js?
Why MongoDB?
Chapter 2: Preprocessing Data
Data sources
Open data
Text files
Excel files
SQL databases
NoSQL databases
Web scraping
Data scrubbing
Statistical methods
Text parsing
Data transformation
Data formats
Parsing a CSV file with the CSV module
Parsing CSV file using NumPy
Parsing JSON file using the JSON module
Parsing XML in Python using the XML module
Data reduction methods
Filtering and sampling
Binned algorithm
Dimensionality reduction
Getting started with OpenRefine
Text facet
Text filters
Numeric facets
Transforming data
Exporting data
Operation history
Chapter 3: Getting to Grips with Visualization
What is visualization?
Working with web-based visualization
Exploring scientific visualization
Visualization in art
The visualization life cycle
Visualizing different types of data
Getting started with D3.js
Bar chart
Pie chart
Scatter plots
Single line chart
Multiple line chart
Interaction and animation
Data from social networks
An overview of visual analytics
Chapter 4: Text Classification
Learning and classification
Bayesian classification
Naïve Bayes
E-mail subject line tester
The data
The algorithm
Classifier accuracy
Chapter 5: Similarity-Based Image Retrieval
Image similarity search
Dynamic time warping
Processing the image dataset
Implementing DTW
Analyzing the results
Chapter 6: Simulation of Stock Prices
Financial time series
Random Walk simulation
Monte Carlo methods
Generating random numbers
Implementation in D3js
Quantitative analyst
Chapter 7: Predicting Gold Prices
Working with time series data
Components of a time series
Smoothing time series
Lineal regression
The data – historical gold prices
Nonlinear regressions
Kernel Ridge Regressions
Smoothing the gold prices time series
Predicting in the smoothed time series
Contrasting the predicted value
Chapter 8: Working with Support Vector Machines
Understanding the multivariate dataset
Dimensionality reduction
Linear Discriminant Analysis (LDA)
Principal Component Analysis (PCA)
Getting started with SVM
Kernel functions
The double spiral problem
SVM implemented on mlpy
Chapter 9: Modeling Infectious Diseases with Cellular Automata
Introduction to epidemiology
The epidemiology triangle
The epidemic models
The SIR model
Solving the ordinary differential equation for the SIR model with SciPy
The SIRS model
Modeling with Cellular Automaton
Cell, state, grid, neighborhood
Global stochastic contact model
Simulation of the SIRS model in CA with D3.js
Chapter 10: Working with Social Graphs
Structure of a graph
Undirected graph
Directed graph
Social networks analysis
Acquiring the Facebook graph
Working with graphs using Gephi
Statistical analysis
Male to female ratio
Degree distribution
Histogram of a graph
Transforming GDF to JSON
Graph visualization with D3.js
Chapter 11: Working with Twitter Data
The anatomy of Twitter data
Trending topics
Using OAuth to access Twitter API
Getting started with Twython
Simple search using Twython
Working with timelines
Working with followers
Working with places and trends
Working with user data
Streaming API
Chapter 12: Data Processing and Aggregation with MongoDB
Getting started with MongoDB
Mongo shell
Data preparation
Data transformation with OpenRefine
Inserting documents with PyMongo
Aggregation framework
Chapter 13: Working with MapReduce
An overview of MapReduce
Programming model
Using MapReduce with MongoDB
Map function
Reduce function
Using mongo shell
Using Jupyter
Using PyMongo
Filtering the input collection
Grouping and aggregation
Counting the most common words in tweets
Chapter 14: Online Data Analysis with Jupyter and Wakari
Getting started with Wakari
Creating an account in Wakari
Getting started with IPython notebook
Data visualization
Introduction to image processing with PIL
Opening an image
Working with an image histogram
Getting started with pandas
Working with Time Series
Working with multivariate datasets with DataFrame
Grouping, Aggregation, and Correlation
Sharing your Notebook
The data
Chapter 15: Understanding Data Processing using Apache Spark
Platform for data processing
The Cloudera platform
Installing Cloudera VM
An introduction to the distributed file system
First steps with Hadoop Distributed File System – HDFS
File management with HUE – web interface
An introduction to Apache Spark
The Spark ecosystem
The Spark programming model
An introductory working example of Apache Startup

پست ها تصادفی