توضیحاتی در مورد کتاب Printed Antennas: Theory and Design
نام کتاب : Printed Antennas: Theory and Design
عنوان ترجمه شده به فارسی : آنتن های چاپی: تئوری و طراحی
سری :
نویسندگان : Binod Kumar Kanaujia
ناشر : Taylor & Francis
سال نشر : 2020
تعداد صفحات : 463
ISBN (شابک) : 2020024665 , 9780367420451
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 38 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1 Basic Theory and Design of Printed Antennas
1.1 Evolution and Upcoming Growth of Printed Antennas
1.2 Features of Printed Antennas
1.2.1 Feeding Techniques
1.2.1.1 Coaxial Feeding
1.2.1.2 Microstrip Feeding
1.2.1.3 Proximity-Coupled Feeding
1.2.1.4 Aperture-Coupled Feeding
1.2.2 Performance Factors of Printed Antennas
1.2.2.1 Radiation Pattern
1.2.2.2 Directivity
1.2.2.3 Antenna Gain
1.2.2.4 Bandwidth
1.2.2.5 Polarization
1.2.2.6 Axial Ratio
1.3 Characteristics of Printed Antennas
1.3.1 Different Shapes of Printed Antennas
1.3.2 General Characteristics of Basic Patches
1.3.2.1 The Rectangular Patch
1.3.2.2 The Circular Patch
1.3.2.3 The Triangular Patch
1.3.2.4 Annular Ring Patch
1.4 Field of Applications for Printed Antennas
1.4.1 Advantages and Disadvantages of Printed Antennas
1.5 Techniques Developed for Low-Profile Printed Antennas
1.5.1 Features of Printed Antenna Technology
1.5.2 Basic Issues and Design Limitations
1.6 Analysis Methods for Some Common Patches
1.6.1 Analysis of Rectangular Patch Antenna by Transmission Line Model
1.6.2 Analysis of Circular Patch Antenna by Cavity Model
1.7 Special Measurement Techniques for Printed Antennas
1.7.1 Substrate Properties
1.7.2 Connector Characterization
1.7.3 Measurements of Printed Lines and Networks
1.7.4 Near-Field Probing
1.7.5 Efficiency Measurement
1.8 Summary Remarks
References
Chapter 2 Latest Trends in the Field of Printed Antennas
2.1 Introduction
2.2 Latest Research Areas in the Field of Printed Antennas
2.2.1 High-Gain Printed Antennas
2.2.2 Super-Wideband Printed Antennas
2.2.3 Printed Antennas with Circular Polarization (CP) Features
2.2.4 ECC Reduction in MIMO Printed Antenna
2.2.5 Printed Antenna with Low RCS Value
2.2.6 Printed Antenna Design for 5G Applications
2.3 Conclusion
References
Chapter 3 Radiation Pattern Agility of Printed Antennas
3.1 Introduction
3.2 Types of Reconfigurable Antennas
3.3 Microwave RF Switches
3.3.1 PIN Diode Switches
3.3.2 Varactor Diode
3.3.3 Microelectromechanical Systems
3.4 PIN Diode-Based Reconfigurable Patch Antenna for Pattern Agility
3.5 Conclusion
References
Chapter 4 Band Hopping in Printed Antennas
4.1 Introduction
4.2 Theory of MOS Loaded CMSA with an Airgap
4.2.1 Metal Oxide Semiconductor
4.2.2 Double MOS Loaded Circular Microstrip Antenna with an Airgap
4.2.3 Specifications of Double MOS Loaded CMSA with an Airgap
4.2.4 Radiation Pattern of CMSA
4.2.5 Properties of Double MOS Loaded CMSA with an Airgap
4.3 BST Varactor Diode Loaded Stacked CMSA
4.3.1 Analysis of Upper Patch
4.3.2 Analysis of Lower Patch
4.3.3 Staked Circular Patch
4.3.4 BST Varactor Diode Loaded Stacked Microstrip Patch
4.3.5 Radiation Pattern of Stacked CMSA
4.3.6 Specifications of BST Varactor Diode Loaded Stacked CMSA
4.3.7 Properties of BST Varactor Diode Loaded Stacked CMSA
4.4 Conclusion
References
Chapter 5 Pattern and Polarization Diversity in Antennas
5.1 Introduction
5.1.1 Pattern Diversity
5.1.2 Effect of Pattern Diversity on Diversity Gain (DG) and Cross-Envelope Correlation Coefficient (ECC)
5.2 Polarization Diversity
5.2.1 Diversity Gain of Polarization Diversity system
5.2.2 If Two Orthogonal Components are Transmitted
5.2.3 If a Single Linearly Polarized Component is Transmitted
5.2.4 If a Circularly Polarized Antenna Transmits a Right-Hand Circular Polarization (RHCP) Component
5.2.5 If the Radiated Signal is Obliquely Polarized
5.3 Massive MIMO Antennas
5.4 Conclusion
References
Chapter 6 Compact Printed Antenna Designs: Need for UWB Communications
6.1 Introduction
6.2 An Asymmetric U-shaped Printed Monopole Antenna Embedded with a T-shaped Strip
6.2.1 Antenna Configuration and Its Specifications
6.2.2 Parametric Study of the Antenna
6.2.2.1 Effect of the Radiating Patch
6.2.2.2 Effect of the Gap between the Ground Plane and Radiating Patch
6.2.2.3 Effect of the Ground Plane Structure
6.2.3 Comparative Results of the Antenna
6.3 Small Size Scarecrow-Shaped CPW- and Microstrip Line-Fed UWB Antennas
6.3.1 CPW-Fed Scarecrow-Shaped Patch Antenna
6.3.1.1 Antenna Design
6.3.1.2 Parametric Study
6.3.1.3 Radiation Pattern of the CPW-Fed Antenna
6.3.2 Microstrip Line-Fed UWB Antenna
6.3.2.1 Antenna Design
6.3.2.2 Antenna Results
6.3.2.3 Radiation Pattern of the Microstrip Line-Fed Antenna
6.4 A Half-Cut Design of a Low-Profile UWB Planar Antenna
6.4.1 Development of Antenna and Its Optimization
6.4.2 Return Loss of the Antenna
6.4.3 PMW Technique and Current Distribution Analysis
6.4.4 Antenna Gain and Group Delay
6.4.5 Radiation Characteristics
6.5 A Modified Microstrip Line-Fed Compact UWB Printed Antenna
6.5.1 Antenna Design
6.5.2 Parametric Study of the Designed Antenna
6.5.3 Antenna Fabrication and Results
6.5.3.1 VSWR Measurement
6.5.3.2 Realized Gain and Radiation Efficiency
6.5.3.3 Radiation Characteristics
6.5.3.4 Time-Domain Analysis
6.6 Conclusions
References
Chapter 7 Circularly Polarized Printed Antennas
7.1 Introduction
7.2 Circularly Polarized Stacked Antennas
7.2.1 A Triple-CP Band Reconfigurable Stacked Antenna
7.2.2 Quad-Band CP Stacked Antennas
7.2.3 Triple-Band Reconfigurable Antenna Design
7.2.4 Quad-Band Antenna Design
7.3 Properties of Circularly Polarized Antennas
7.3.1 Single-Band Circularly Polarized Antennas
7.3.2 Reconfigurable Circularly Polarized Microstrip Antennas
7.3.3 Impedance Bandwidth Improvement of Triple-Band CP Antennas
7.3.4 Parametric Study of Quad-Band CP Antennas
7.3.5 Simulated and Measured Results
7.3.6 Operating Mechanism
7.4 Conclusion
References
Chapter 8 Special Techniques of Printed Antenna
8.1 Introduction
8.2 C-Shaped Recongfiurable Antennas
8.2.1 C-Shaped Antenna with Switchable Wideband Frequency Notch
8.2.2 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
8.2.3 Design of C Shape Antenna with Switchable Wideband Frequency Notch
8.2.4 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
8.2.5 Characteristics of the C-Shaped Antenna with a Switchable Wideband Frequency Notch
8.2.6 Other Radiation Characteristics
8.2.7 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
8.2.8 Radiation Mechanism
8.2.9 Parametric Study
8.3 Magnetoelectric Dipole Antenna
8.3.1 Antenna Design
8.3.2 Parametric Studies
8.3.3 Characteristics of the Magnetoelectric Dipole Antenna
8.4 Conclusion
References
Chapter 9 Reconfigurable Printed Antennas
9.1 Introduction
9.2 Different Approaches for Attaining Reconfigurability
9.2.1 Electrical Method-Based Reconfigurable Antennas
9.2.1.1 RF-MEMS-Based Reconfigurable Antennas
9.2.1.2 PIN Diode-Based Reconfigurable Antennas
9.2.1.3 Varactor Diode-Based Reconfigurable Antennas
9.2.2 Optical Methods/Photoconductive Switches
9.2.3 Physically/Mechanically Reconfigurable Printed Antennas
9.2.4 Material-Based Reconfigurable Antennas
9.3 Applications
9.3.1 Frequency- Reconfigurable Antennas for Cognitive Radio System
9.3.2 Pattern- Reconfigurable Antennas for the MIMO Systems
9.3.3 Reconfigurable Antennas for Satellite Systems
9.4 Multi-Reconfigurable Antennas: The Latest Trend
9.5 Conclusion
References
Chapter 10 Dielectric Resonator-Based Multiple-Input Multiple- Output (MIMO) Antennas
10.1 Introduction
10.2 Wireless Communication Systems
10.3 Need of Multiple Antennas
10.4 MIMO Wireless Communication
10.5 MIMO Techniques
10.6 MIMO Antenna Systems
10.7 Performance Metrics of MIMO Antennas
10.7.1 Correlation Coefficient
10.7.2 Diversity Gain
10.7.3 Mean Effective Gain
10.7.4 Total Active Reflection Coefficient
10.7.5 Channel Capacity Loss ( CCL)
10.8 Problem in MIMO Antenna Systems
10.9 Introduction to Dielectric Resonator Antennas ( DRAs)
10.9.1 Characteristics of Dielectric Resonator Antennas ( DRAs)
10.9.2 Applications of DRAs
10.9.3 Basic Shapes of DRAs
10.9.4 Cylindrical Dielectric Resonator Antennas
10.9.5 Feeding Mechanisms
10.10 MIMO Dielectric Resonator Antennas
10.11 MIMO DRA Examples
10.11.1 Generation of Orthogonal Mode
10.11.2 Excitation of Degenerated Modes
10.11.3 Introduction of the Defected Ground Plane
10.11.4 Use of Decoupling Structures
10.11.5 Meta-Surface/Frequency-Selective Surface/EBGbetween Two DRAs
10.11.6 Separation of Radiation Patterns
10.12 Conclusion
References
Chapter 11 Advances in Patch Antenna Design Using EBG Structures
11.1 Introduction
11.2 EBG Structures and Their Properties
11.3 EBG Structures in Patch Antenna Design
11.3.1 Bandwidth Improvement in Patch Antennas Using EBG Structures
11.3.2 Gain Improvement Using EBG Structures
11.3.3 Mutual Coupling Reduction Using EBG Structures
11.3.4 Band-Notch Operation in Patch Antennas Using EBG Structures
11.3.5 Dual-Band and Multi-Band Characteristics Using EBG Structures
11.3.6 A Low-Profile MPA Using EBG Structures
11.4 Real-Life Applications of EBG Patch Antennas
11.4.1 High-Precision GPS
11.4.2 Wearable Electronics
11.4.3 Radio Frequency Identification (RFID) Systems
11.4.4 Radar Systems
11.5 Conclusion
References
Chapter 12 Design of Frequency Selective Surface (FSS) Printed Antennas
12.1 Introduction
12.2 Types of FSS
12.2.1 On the Basis of FSS Elements
12.2.2 On the Basis of Structure
12.2.2.1 Single-Layer FSS
12.2.2.2 Multilayer FSS
12.2.2.3 3-Dimensional FSS
12.2.3 On the Basis of Application
12.2.3.1 Active FSS
12.2.3.2 Textile FSS
12.2.3.3 Meta-Skin FSS
12.2.3.4 Wearable FSS
12.2.3.5 Absorber FSS
12.3 Principal of Operation
12.3.1 FSS Operational Theory
12.3.2 Periodic Structure (FSS)
12.4 Equivalent Circuit Model
12.4.1 Grating Strip
12.4.2 Square Loop
12.4.3 Jerusalem Cross
12.5 Applications of FSS
12.5.1 Enhancement of the Gain and Bandwidth of the Antenna Systems
12.5.2 Isolation in MIMO Antennas
12.5.3 Spatial Filtering
12.5.4 FSS for Reconfiguration of the Antennas
12.5.5 Electromagnetic Shielding
12.5.6 FSS Radomes for Antenna Protection
12.6 Conclusion
Reference
Index