توضیحاتی در مورد کتاب Probabilistic Structures in Evolution (Ems of Congress Reports, 17)
نام کتاب : Probabilistic Structures in Evolution (Ems of Congress Reports, 17)
عنوان ترجمه شده به فارسی : ساختارهای احتمالی در تکامل (Ems of Congress Reports, 17)
سری :
نویسندگان : Ellen Baake, Anton Wakolbinger
ناشر : European Mathematical Society
سال نشر :
تعداد صفحات : 503
ISBN (شابک) : 9783985470051 , 3985470057
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 7 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents\nPreface\n1 Accessibility percolation in random fitness landscapes\n 1.1 Introduction\n 1.2 Accessibility percolation in sequence space\n 1.3 Accessibility percolation on trees\n 1.4 Correlated fitness landscapes\n 1.5 Paths with valley crossing\n 1.6 Summary and conclusions\n References\n2 Branching random walks in random environment\n 2.1 Introduction\n 2.2 Spatial branching random walks in random environment\n 2.3 Multitype branching random walk in random potential\n 2.4 The PAM on finite graphs\n 2.5 Higher moments of the numbers of particles\n 2.6 Further perspectives\n References\n3 Microbial populations under selection\n 3.1 Introduction\n 3.2 Lenski\'s long-term evolution experiment\n 3.3 A host-parasite model with balancing selection and reinfection\n References\n4 The population genetics of the CRISPR-Cas system in bacteria\n 4.1 Introduction\n 4.2 Classification of CRISPR systems and components\n 4.3 The pattern of spacer arrays within CRISPR\n 4.4 Outlook\n References\n5 Evolution of altruistic defence traits in structured populations\n 5.1 Introduction\n 5.2 Asymptotic frequencies of altruistic defence traits\n 5.3 Fixation/extinction of the average altruist frequency\n 5.4 Convergence to a forest of trees of excursions\n 5.5 Differentiability of semigroups\n References\n6 Stochastic processes and host-parasite coevolution: Linking coevolutionary dynamics and DNA polymorphism data\n 6.1 Introduction\n 6.2 Intrinsic stochasticity\n 6.3 Extrinsic stochasticity\n 6.4 Conclusion\n References\n7 Stochastic models for adaptive dynamics: Scaling limits and diversity\n 7.1 Theories of evolution\n 7.2 The individual based model\n 7.3 Scaling limits\n 7.4 The polymorphic evolution sequence\n 7.5 In one step\n 7.6 Escape through a fitness well\n References\n8 Genealogies and inference for populations with highly skewed offspring distributions\n 8.1 Multiple merger coalescents in population genetics\n 8.2 Inference based on the site-frequency spectrum\n 8.3 Multiple loci, diploidy and $\\Xi$-coalescents\n 8.4 Discussion: Are they really out there?\n References\n9 Multiple-merger genealogies: Models, consequences, inference\n 9.1 Multiple-merger coalescents\n 9.2 Modelling multiple mergers for variable population size\n 9.3 How much genetic information is contained in a subsample?\n 9.4 Model selection between $n$-coalescents\n 9.5 Partition blocks and minimal observable clades\n References\n10 Diploid populations and their genealogies\n 10.1 Introduction\n 10.2 Haploid models\n 10.3 Diploid models\n 10.4 Various examples of diploid population models\n 10.5 Discussion and further connections to the literature\n References\n11 Probabilistic aspects of $\\Lambda$-coalescents in equilibrium and in evolution\n 11.1 Introduction\n 11.2 Dust-free $\\Lambda$-coalescents\n 11.3 $\\Lambda$-coalescents with a dust component\n 11.4 An asymptotic expansion for Beta-coalescents\n 11.5 Evolving $n$-coalescents\n 11.6 Evolving $\\Lambda$-coalescents\n References\n12 Population genetic models of dormancy\n 12.1 Introduction\n 12.2 Seed banks with spontaneous switching\n 12.3 Simultaneous switching\n 12.4 Open problems and perspectives for future work\n References\n13 From high to low volatility: Spatial Cannings with block resampling and spatial Fleming–Viot with seed-bank\n 13.1 Background\n 13.2 Two models\n 13.3 Equilibrium\n 13.4 Random environment\n 13.5 Extensions\n 13.6 Perspectives\n References\n14 Ancestral lineages in spatial population models with local regulation\n 14.1 Introduction\n 14.2 Random walk on the oriented percolation cluster\n 14.3 Ancestral lineages for logistic branching random walks\n 14.4 Discussion\n References\n15 The symbiotic branching model: Duality and interfaces\n 15.1 Introduction\n 15.2 The discrete-space voter model\n 15.3 The symbiotic branching model\n 15.4 Self-duality in the symbiotic branching model\n 15.5 Moment duality in the symbiotic branching model\n 15.6 Interface duality in the symbiotic branching model\n 15.7 Entrance laws for annihilating Brownian motions\n 15.8 Outlook\n References\n16 Multitype branching models with state-dependent mutation and competition in the context of phylodynamic patterns\n 16.1 Introduction\n 16.2 The individual-based branching model\n 16.3 Possible scaling regimes\n 16.4 The measure-valued model\n 16.5 The evolving phylogenies\n 16.6 A two-level model\n References\n17 Ancestral lines under recombination\n 17.1 Introduction\n 17.2 Moran model with recombination\n 17.3 Ancestral recombination graph and deterministic limit\n 17.4 An explicit solution for single-crossover recombination\n 17.5 Recombination in discrete time\n References\n18 Towards more realistic models of genomes in populations: The Markov-modulated sequentially Markov coalescent\n 18.1 Modelling the evolution of genomes in populations\n 18.2 Heterogeneity of processes along the genome\n 18.3 Existing approaches to account for spatial heterogeneity\n 18.4 The integrative sequentially Markov coalescent\n 18.5 Conclusions\n References\n19 Diffusion limits of genealogies under various modes of selection\n 19.1 Introduction\n 19.2 Tree-valued Fleming–Viot process with selection and mutation\n 19.3 Genealogies under low levels of selection\n 19.4 A result on stochastic averaging\n 19.5 The tree-valued Fleming–Viot process under fluctuating selection\n References\n20 Counting, grafting and evolving binary trees\n 20.1 Introduction\n 20.2 Counting trees\n 20.3 Properties of ranked trees\n 20.4 Induced subtrees\n 20.5 Recombination\n 20.6 Evolving trees\n References\n21 Algebraic measure trees: Statistics based on sample subtree shapes and sample subtree masses\n 21.1 Introduction\n 21.2 Algebraic measure trees\n 21.3 The subspace of binary algebraic measure trees\n 21.4 (Sub-)triangulations of the circle\n 21.5 The $\\alpha$-Ford chain on $m$-labelled cladograms and its dual\n 21.6 The $\\alpha$-Ford tree in the limit as $N \\to \\infty$\n 21.7 The $\\alpha$-Ford chain in the diffusion limit\n References\nList of contributors\nIndex