Probability, Statistics, and Stochastic Processes

دانلود کتاب Probability, Statistics, and Stochastic Processes

44000 تومان موجود

کتاب احتمال، آمار و فرآیندهای تصادفی نسخه زبان اصلی

دانلود کتاب احتمال، آمار و فرآیندهای تصادفی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Probability, Statistics, and Stochastic Processes

نام کتاب : Probability, Statistics, and Stochastic Processes
عنوان ترجمه شده به فارسی : احتمال، آمار و فرآیندهای تصادفی
سری :
نویسندگان : ,
ناشر : Wiley
سال نشر : 2012
تعداد صفحات : 574
ISBN (شابک) : 9780470889749 , 0470889748
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 6 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


PROBABILITY, STATISTICS, AND STOCHASTIC PROCESSES......Page 1
CONTENTS......Page 7
Preface......Page 13
Preface to the First Edition......Page 15
1.1 Introduction......Page 17
1.2 Sample Spaces and Events......Page 19
1.3 The Axioms of Probability......Page 23
1.4 Finite Sample Spaces and Combinatorics......Page 31
1.4.1 Combinatorics......Page 33
1.5 Conditional Probability and Independence......Page 43
1.5.1 Independent Events......Page 49
1.6 The Law of Total Probability and Bayes’ Formula......Page 57
1.6.1 Bayes’ Formula......Page 63
1.6.2 Genetics and Probability......Page 70
1.6.3 Recursive Methods......Page 71
Problems......Page 79
2.1 Introduction......Page 92
2.2 Discrete Random Variables......Page 93
2.3 Continuous Random Variables......Page 98
2.3.1 The Uniform Distribution......Page 106
2.3.2 Functions of Random Variables......Page 108
2.4 Expected Value and Variance......Page 111
2.4.1 The Expected Value of a Function of a Random Variable......Page 116
2.4.2 Variance of a Random Variable......Page 120
2.5.1 Indicators......Page 127
2.5.2 The Binomial Distribution......Page 128
2.5.3 The Geometric Distribution......Page 132
2.5.4 The Poisson Distribution......Page 133
2.5.6 Describing Data Sets......Page 137
2.6 The Exponential Distribution......Page 139
2.7 The Normal Distribution......Page 143
2.8.1 The Lognormal Distribution......Page 147
2.8.2 The Gamma Distribution......Page 149
2.8.3 The Cauchy Distribution......Page 150
2.8.4 Mixed Distributions......Page 151
2.9 Location Parameters......Page 153
2.10 The Failure Rate Function......Page 155
2.10.1 Uniqueness of the Failure Rate Function......Page 157
Problems......Page 160
3.2 The Joint Distribution Function......Page 172
3.3 Discrete Random Vectors......Page 174
3.4 Jointly Continuous Random Vectors......Page 176
3.5 Conditional Distributions and Independence......Page 180
3.5.1 Independent Random Variables......Page 184
3.6.1 Real-Valued Functions of Random Vectors......Page 188
3.6.2 The Expected Value and Variance of a Sum......Page 192
3.6.3 Vector-Valued Functions of Random Vectors......Page 198
3.7 Conditional Expectation......Page 201
3.7.1 Conditional Expectation as a Random Variable......Page 205
3.7.2 Conditional Expectation and Prediction......Page 207
3.7.3 Conditional Variance......Page 208
3.7.4 Recursive Methods......Page 209
3.8 Covariance and Correlation......Page 212
3.8.1 The Correlation Coefficient......Page 217
3.9 The Bivariate Normal Distribution......Page 225
3.10 Multidimensional Random Vectors......Page 232
3.10.1 Order Statistics......Page 234
3.10.2 Reliability Theory......Page 239
3.10.3 The Multinomial Distribution......Page 241
3.10.4 The Multivariate Normal Distribution......Page 242
3.10.5 Convolution......Page 243
3.11.1 The Probability Generating Function......Page 247
3.11.2 The Moment Generating Function......Page 253
3.12 The Poisson Process......Page 256
3.12.1 Thinning and Superposition......Page 260
Problems......Page 263
4.1 Introduction......Page 279
4.2 The Law of Large Numbers......Page 280
4.3 The Central Limit Theorem......Page 284
4.3.1 The Delta Method......Page 289
4.4.1 Discrete Limits......Page 291
4.4.2 Continuous Limits......Page 293
Problems......Page 294
5.1 Introduction......Page 297
5.2 Random Number Generation......Page 298
5.3 Simulation of Discrete Distributions......Page 299
5.4 Simulation of Continuous Distributions......Page 301
5.5 Miscellaneous......Page 306
Problems......Page 308
6.2 Point Estimators......Page 310
6.2.1 Estimating the Variance......Page 318
6.3 Confidence Intervals......Page 320
6.3.1 Confidence Interval for the Mean in the Normal Distribution with Known Variance......Page 323
6.3.2 Confidence Interval for an Unknown Probability......Page 324
6.4.1 The Method of Moments......Page 328
6.4.2 Maximum Likelihood......Page 331
6.4.3 Evaluation of Estimators with Simulation......Page 338
6.4.4 Bootstrap Simulation......Page 340
6.5 Hypothesis Testing......Page 343
6.5.1 Large Sample Tests......Page 348
6.5.2 Test for an Unknown Probability......Page 349
6.6.1 P-Values......Page 350
6.6.2 Data Snooping......Page 351
6.6.3 The Power of a Test......Page 352
6.6.4 Multiple Hypothesis Testing......Page 354
6.7 Goodness of Fit......Page 355
6.7.1 Goodness-of-Fit Test for Independence......Page 362
6.7.2 Fisher’s Exact Test......Page 365
6.8 Bayesian Statistics......Page 367
6.8.1 Noninformative priors......Page 375
6.8.2 Credibility Intervals......Page 378
6.9.1 Nonparametric Hypothesis Testing......Page 379
6.9.2 Comparing Two Samples......Page 386
6.9.3 Nonparametric Confidence Intervals......Page 391
Problems......Page 394
7.1 Introduction......Page 407
7.2 Sampling Distributions......Page 408
7.3 Single Sample Inference......Page 411
7.3.1 Inference for the Variance......Page 412
7.3.2 Inference for the Mean......Page 415
7.4.1 Inference about Means......Page 418
7.4.2 Inference about Variances......Page 423
7.5.1 One-Way Analysis of Variance......Page 425
7.5.2 Multiple Comparisons: Tukey’s Method......Page 428
7.5.3 Kruskal–Wallis Test......Page 429
7.6 Linear Regression......Page 431
7.6.1 Prediction......Page 438
7.6.2 Goodness of Fit......Page 440
7.6.3 The Sample Correlation Coefficient......Page 441
7.6.4 Spearman’s Correlation Coefficient......Page 445
7.7 The General Linear Model......Page 447
Problems......Page 452
8.1 Introduction......Page 460
8.2 Discrete -Time Markov Chains......Page 461
8.2.1 Time Dynamics of a Markov Chain......Page 463
8.2.2 Classification of States......Page 466
8.2.3 Stationary Distributions......Page 470
8.3.1 The Simple Random Walk......Page 480
8.3.2 Multidimensional Random Walks......Page 484
8.3.3 Branching Processes......Page 485
8.4 Continuous -Time Markov Chains......Page 491
8.4.1 Stationary Distributions and Limit Distributions......Page 496
8.4.2 Birth–Death Processes......Page 500
8.4.3 Queueing Theory......Page 504
8.4.4 Further Properties of Queueing Systems......Page 507
8.5 Martingales......Page 510
8.5.1 Martingale Convergence......Page 511
8.5.2 Stopping Times......Page 513
8.6 Renewal Processes......Page 518
8.6.1 Asymptotic Properties......Page 520
8.7 Brownian Motion......Page 525
8.7.1 Hitting Times......Page 528
8.7.2 Variations of the Brownian Motion......Page 531
Problems......Page 533
Appendix A: Tables......Page 543
Appendix B: Answers to Selected Problems......Page 551
Further Reading......Page 567
Index......Page 569




پست ها تصادفی