Rare Earth Chemistry

دانلود کتاب Rare Earth Chemistry

40000 تومان موجود

کتاب شیمی نادر زمین نسخه زبان اصلی

دانلود کتاب شیمی نادر زمین بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Rare Earth Chemistry

نام کتاب : Rare Earth Chemistry
عنوان ترجمه شده به فارسی : شیمی نادر زمین
سری : De Gruyter STEM
نویسندگان : , ,
ناشر : Walter de Gruyter
سال نشر : 2020
تعداد صفحات : 670
ISBN (شابک) : 9783110653601
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 18 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Also of interest
Rare Earth Chemistry
Copyright
Preface
Contents
List of contributors
1. The elements
1.1 Discovery of the rare-earth elements
1.1.1 The protagonists
1.1.2 The search for REs: an intricate problem
1.1.3 The first period: yttrium and cerium
1.1.4 The second period: essential contributions from Carl Gustaf Mosa
1.1.5 The third period: the playground of spectroscopy
1.1.6 Concluding remarks
References
Annex. Important personalities in the discovery of rare earths
1.2 Rare-earth minerals and rare-earth mining
1.2.1 Economic importance and applications
1.2.2 Primary raw materials
1.2.3 Secondary raw materials
References
1.3 Rare earth resources and processing
1.3.1 Mining and collection
1.3.2 Concentration
1.3.3 Refining and separation
References
1.4 Rare earth metal production and refinement
1.4.1 Smelt electrolysis and metallothermic reduction
1.4.2 Metal refinement
References
1.5 Recycling aspects – magnets
1.5.1 Strategies
1.5.2 Obstacles
1.5.3 Alternatives: solid-state chlorination
1.6 Recycling aspects – phosphors
References
1.7 The structures of the elements
References
1.8 Electronic properties of the lanthanide ions
References
2. Reactivity and compounds
2.1 Halides of trivalent lanthanides
2.1.1 Synthesis
2.1.2 Binary halides REX3
2.1.3 Binary halides REX2
2.1.4 Ternary lanthanide halides
2.1.4.1 Derivatives of the UCl3 type of structure
2.1.4.2 ARE2X7-type halides
2.1.4.3 AREX4-type halides
2.1.4.4 A2REX5-type halides
2.1.4.5 A3RE2X9-type halides
2.1.4.6 A3REX6-type halides and derivatives
2.1.4.7 Complex halides in AX2/REX3 systems
2.2 Lanthanide compounds with tetrahedral oxoanions
2.2.1 Silicates
2.2.1.1 Orthosilicates
2.2.1.2 Disilicates
2.2.1.3 Higher silicates
2.2.2 Phosphates
2.2.2.1 Orthophosphates
2.2.2.2 Polyphosphates
2.2.3 Sulfates
2.2.3.2 Anhydrous sulfates
2.2.3.1 Sulfate hydrates
2.2.3.3 Acidic sulfates
2.2.3.4 Halide sulfates
2.2.4 Sulfate derivatives
2.2.4.1 Amidosulfates
2.2.4.2 Methanesulfonates
2.2.5 Perchlorates
2.2.5.1 Perchlorate hydrates
2.2.5.2 Anhydrous perchlorates
2.2.5.3 Basic perchlorates
References
2.3 Lanthanide compounds with low valence
2.3.1 Mono- and dihalides of lanthanides
2.3.2 Discrete clusters
2.3.3 Chain structures
2.3.4 Layer structures
2.3.5 Three-dimensional frameworks
2.3.6 A paracrystalline system
References
2.4 Intermetallic compounds
2.4.1 Synthesis conditions
2.4.2 Reactivity and compound formation
2.4.3 Volume/Iandelli plots
2.4.4 Some structural principles – binaries
2.4.5 Some structural principles – ternaries
2.4.6 Complex intermetallics
2.4.7 Applications and function
References
2.5 Polyoxometalates
2.5.1 Isopolyanions
2.5.2 Lanthanide-containing isopolyanions
2.5.3 Heteropolyanions
2.5.4 Lanthanide-containing heteropolyanions
2.5.5 General properties of lanthanide-containing POMs
2.6 Coordination chemistry
2.6.1 Basic concepts and definitions
2.6.2 Electronic properties of 4f-element ions
2.6.3 Complexation reactions
2.6.4 Ionic radii, coordination numbers and coordination polyhedra
2.6.5 Solvation and solvent exchange
2.6.6 Complexes with classical ligands
2.6.7 Macrocyclic complexes
2.6.8 Self-assembly processes
2.6.9 Coordination polymers
2.6.10 Conclusion
2.7 Organometallic rare-earth chemistry
2.7.1 Historic perspective
2.7.2 Bonding considerations of rare-earth organometallics
2.7.3 Reaction mechanism in rare-earth metal chemistry and small molecule activation
2.7.3.1 σ-Bond metathesis
2.7.3.2 Insertion reactions
2.7.3.3 Single-electron transfer reactions
2.7.3.4 Application for single molecule magnets
References
3. Characterization and properties
3.1 Analysis of rare-earth metals and their species
References
3.2 Rare earth toxicology
3.2.1 Introduction and general considerations
3.2.2 Pathophysiological mechanisms of action
3.2.3 Metabolic pathways
3.2.4 Toxicity of REE
3.2.5 Toxicity on pulmonary tissues
3.2.6 Toxicity on hepatic tissues
3.2.7 Toxicity on spleen, kidney and gastrointestinal tract
3.2.8 Toxicity on bones
3.2.9 Toxicity on skin and eyes
3.2.10 Toxicity on brain
References
3.3 Rare earths magnetism – condensed matter
3.3.2 Russel–Saunders coupling
3.3.3 Hund’s rules
3.3.4 Magnetic susceptibility of free RE ions
3.3.5 Magnetic saturation
3.3.6 Crystal electric fields
3.3.7 Exchange interaction
3.3.8 Magnetic properties of the RE elements
References
3.4 Rare earth magnetism – molecules
References
3.5 Optical characterization
3.5.1 Basics
3.5.2 Reflection and absorption spectroscopy
3.5.3 Emission and excitation spectroscopy
3.5.4 Thermal quenching
3.5.5 Decay curves
3.5.6 Saturation measurements
3.5.7 Site selective spectroscopy
3.5.8 VUV spectroscopy
References
3.6 Solid-state NMR and Mößbauer spectroscopy
3.6.1 Scandium
3.6.2 Yttrium
3.6.3 Lanthanum
3.6.4 Ytterbium
3.6.5 Lutetium
3.6.6 Basic Principles of Mößbauer Spectroscopy of Rare Earth Isotopes
3.6.7 Applications of Mößbauer Spectroscopy to Rare Earth Structural Chemistry
References
3.7 Rare-earth ion spin dynamics as a source of structural information
3.7.1 Introduction
3.7.2 Rare-earth electron paramagnetic resonance
3.7.2.1 Basic concepts
3.7.2.2 Experimental aspects
3.7.2.3 Continuous-wave measurements on single crystals
3.7.2.4 EPR experiments on disordered materials
3.7.2.5 Hyperfine interaction spectroscopy
3.7.2.6 Distance measurements by pulsed electron double resonance
3.7.3 The effect of 4f paramagnetism upon NMR spectra of proximal nuclei
3.7.3.1 Fundamental concepts
3.7.3.2 Paramagnetic NMR in solution
3.7.3.3 Paramagnetic shifts in the solid state
3.7.4 Conclusions
References
3.8 Electrical and dielectric properties
3.8.1 General aspects
3.8.2 Semiconductors
3.8.3 Superconductors
3.8.4 Ion conductors and mixed conductors
3.8.5 Thermoelectrics
3.8.6 Interface conduction
3.8.7 Dielectric function and polarization
3.8.8 Piezoelectricity
3.8.9 Summary
References
4. Materials and applications
4.1 Optical materials – molecules
References
4.2 Optical materials – microcrystalline powders
4.2.1 Outlook
References
4.3 Optical materials – ceramics
4.3.1 Preliminary note
4.3.2 Brief introduction to ceramics and their fabrication
4.3.2.1 Definition and explanation of terms
4.3.2.2 Ceramic fabrication process
4.3.2.3 Production of optical ceramics
4.3.2.4 Application of optical ceramics without Rare Earth Elements Alumina (REE)
4.3.3 Fabrication and application of optical ceramics based on Rare Earth Elements (REE)
4.3.3.1 Yttria (Y2O3), Scandia (Sc2O3), and Lutetia (Lu2O3)
4.3.3.2 Yttria-Stabilized Zirconia (YSZ, FSZ, CSZ, Y-ZrO2)
4.3.3.3 REE pyrochlores (REE3+2M4+2O7 with M4+ = Zr, Hf, Ti)
4.3.3.4 Lead lanthanum zirconate titanate (Pb1–xLax)(Zr1–yTiy)O3, PLZT)
4.3.3.5 REE alumina garnets (YAG, Y3Al5O12, Y3ScAl4O12 YSAG, Lu3Al5O12, LuAG)
4.3.3.6 REE doped light emitting ceramics
4.3.4 Summary and concluding remarks
References
4.4 Crystal growth of rare-earth doped and rare-earth containing materials
4.4.1 Introduction
4.4.2 Czochralski growth of YAG and other garnets
4.4.3 Czochralski growth of CALGO and related materials
4.4.4 TSSG of KYW = KY(WO4)2 and related materials
4.4.5 TSSG of YAB and related materials
References
4.5 Medical applications of rare earth compounds
4.5.1 REE in bioimaging
4.5.2 REE in nuclear medicine
References
4.6 Rare earth-based scintillators
4.6.1 Overview
4.6.2 Light yield
4.6.3 Decay time
4.6.4 Afterglow
4.6.5 Preparational aspects
4.6.6 Applications
4.6.7 Outlook
References
4.7 Rare earth metals in heterogeneous catalysis
4.7.1 Introduction
4.7.2 Intermetallic compounds
4.7.2.1 Ammonia synthesis
4.7.2.2 Methanol synthesis
4.7.2.3 Methanation and Fischer–Tropsch process
4.7.2.4 Hydrogenation and dehydrogenation
4.7.2.5 Electrocatalysis
4.7.2.6 Additional reactions
4.7.3 Oxides
4.7.3.1 NO decomposition
4.7.3.2 Reactivity spectrum
4.7.3.3 Rare earth oxides as support
4.7.3.4 Catalysts with special morphologies
4.7.3.5 Photocatalysis
4.7.3.6 Oxidative coupling of methane
4.7.3.7 Fluid catalytic cracking
4.7.4 Conclusions
References
4.8 Materials for solid state cooling
4.8.1 Introduction to magnetocaloric effect
4.8.2 Rare earth magnetocaloric materials for cryogenic applications
4.8.3 Near-room-temperature magnetic refrigeration and giant magnetocaloric effect
4.8.4 Novel thermoelectric materials containing rare earths
References
4.9 Rare earth metal-based hydride materials
4.9.1 Binary rare earth metal hydrides and their characterization
4.9.2 Ternary and multinary rare earth metal hydrides
4.9.3 Applications
References
4.10 Lanthanide nanoparticles and their biological applications
4.10.1 Principles of Ln nanoparticles (LnNPs)
4.10.2 Synthesis and characterization
4.10.3 Application in biosensing, bioimaging, and theranostics
4.10.3.1 LnNPs for biosensing
4.10.3.2 LnNPs for luminescence imaging
4.10.3.3 LnNPs for theranostic applications
4.10.4 Other biological applications
4.10.4.1 Ln NPs for computer tomography (CT), single photon emission tomography (SPECT) and positron emission tomography (PET) imaging
4.10.4.2 LnNPs for radioluminescence and Cerenkov photosensitization
4.10.4.3 LnNPs for magnetic resonance imaging (MRI)
4.10.5 Conclusions and perspectives
References
4.11 Rare-earth-based hybrid materials
4.11.1 Survey
4.11.2 Hybrid materials
4.11.2.1 Micropores / Zeolites
4.11.2.2 Zeolites incorporating inorganic emitters
4.11.2.3 Zeolites incorporating metallo-organic emitter complexes
4.11.2.4 Mesopores
4.11.3 Layered structures
4.11.3.1 Layered double hydroxides
4.11.3.2 Clays
References
4.12 Rare earth based superconducting materials
4.12.1 Rare earth metals and alloys
4.12.2 Intermetallic compounds
4.12.3 Superconductivity and magnetic ordering
4.12.4 Rare earth Chevrel phases
4.12.5 Rare earth rhodium borides
4.12.6 Rare earth borocarbides
4.12.7 Rare earth carbides and carbide halides
4.12.8 Rare earth copper oxides
4.12.9 Rare earth iron arsenide superconductors
References
4.13 Rare-earth-containing glasses
4.13.1 Introduction
4.13.2 Physical–chemical criteria of the glassy state
4.13.3 Glass functionalization by rare-earth ions
4.13.4.1 High refractive index glasses
4.13.4 Rare-earth-containing glasses for passive optical device applicat
4.13.4.2 Glass coloring and de-coloring
4.13.4.3 Photochromic and photothermal refractive glasses
4.13.4.4 Magneto-optic glasses
4.13.5.1 Electronic structure of the rare-earth ions
4.13.5 Luminescent devices based on rare-earth containing glasses
4.13.5.2 Rare-earth lasing transitions in glass matrices
4.13.5.3 The influence of the glass matrix
4.13.5.4 Structural characterization of rare-earth local environments in
4.13.6 Rare-earth-doped glasses for in vivo radiation delivery
References
4.14 Bioinorganic chemistry of the elements
References
Marc Wentker, Thomas Jüstel, Jens Leker
4.15 Economic aspects
4.15.1 Criticality overview
4.15.2 Historical development and present status
4.15.3 Usage of rare earth elements
4.15.4 Rare earth elements as innovation drivers
4.15.5 Future supply and demand challenges
4.15.6 The challenge of heavy rare earth elements
4.15.7 Financial perspective
References
Subject Index
Formula Index




پست ها تصادفی