Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites

دانلود کتاب Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites

46000 تومان موجود

کتاب پیشرفت‌های اخیر در کامپوزیت‌های سیمانی چند منظوره نانویی نسخه زبان اصلی

دانلود کتاب پیشرفت‌های اخیر در کامپوزیت‌های سیمانی چند منظوره نانویی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 8


توضیحاتی در مورد کتاب Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites

نام کتاب : Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites
عنوان ترجمه شده به فارسی : پیشرفت‌های اخیر در کامپوزیت‌های سیمانی چند منظوره نانویی
سری : Woodhead Publishing Series in Civil and Structural Engineering
نویسندگان : , ,
ناشر : Woodhead Publishing
سال نشر : 2022
تعداد صفحات : 514
ISBN (شابک) : 0323852297 , 9780323852296
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front Cover
Recent Advances in Nano-Tailored Multi-Functional Cementitious Composites
Copyright Page
Contents
List of contributors
About the editors
Foreword
Preface
References
1 Overview of tailoring cementitious composites with various nanomaterials
1.1 Introduction
1.2 Basic principles of tailoring cementitious composites with nanomaterials
1.2.1 Brief introduction of nanomaterials
1.2.2 Nano-core effect in bulk cement paste phase
1.2.2.1 Nano-effect
Small size
Large surface area
1.2.2.2 Core effect
Intrinsic effect
Nucleating effect
Filling or bonding effect
Pinning effect
1.2.3 Nano-core effect in interfacial transition zone
1.2.4 Nano-core effect zone
1.2.5 Factors affecting the nano-core effect
1.3 Dispersion of nanomaterials
1.3.1 Traditional methods
1.3.2 Functional modification
1.3.3 In-situ growing method
1.3.4 Assembled methods
1.3.5 Surface coating method
1.4 Tailoring cementitious composites with 0D nanomaterials
1.4.1 Nano-SiO2
1.4.1.1 Hydration
1.4.1.2 Rheology
1.4.1.3 Workability
1.4.1.4 Mechanical properties
Static mechanical properties
Dynamic mechanical properties
1.4.1.5 Durability
1.4.1.6 Functional properties
Self-sensing properties
Self-healing properties
Thermal properties
1.4.2 Nano-TiO2
1.4.2.1 Hydration
1.4.2.2 Rheology
1.4.2.3 Workbality
1.4.2.4 Mechanical properties
Static mechanical properties
Dynamic mechanical properties
1.4.2.5 Durability
1.4.2.6 Functional properties
Photocatalysis properties
Electromagnetic shielding and absorption properties
Self-sensing properties
Self-healing properties
1.4.3 Nano-ZrO2
1.4.3.1 Workability
1.4.3.2 Durability
1.4.3.3 Mechanical properties
Static mechanical properties
Dynamic mechanical properties
1.4.4 Functional properties
1.4.4.1 Self-healing properties
1.5 Tailoring cementitious composites with 1D nanomaterials
1.5.1 Carbon nano-tubes
1.5.1.1 Hydration
1.5.1.2 Workability
1.5.1.3 Rheology
1.5.1.4 Mechanical properties
Static mechanical properties
Dynamic mechanical properties
1.5.1.5 Durability
1.5.1.6 Functional properties
Self-sensing property
Electromagnetic properties
Damping properties
Thermal properties
Self-healing properties
1.5.2 Carbon nano-fibers
1.5.2.1 Hydration
1.5.2.2 Rheology
1.5.2.3 Workability
1.5.2.4 Mechanical properties
1.5.2.5 Durability
1.5.2.6 Functional properties
Self-sensing properties
1.6 Tailoring cementitious composites with 2D nanomaterials
1.6.1 Graphene
1.6.1.1 Hydration
1.6.1.2 Rheology
1.6.1.3 Workability
1.6.1.4 Mechanical properties
Static mechanical properties
Dynamic mechanical properties
1.6.1.5 Durability
1.6.1.6 Functional properties
Self-sensing properties
Electromagnetic properties
Thermal properties
Thermoelectric properties
Damping properties
1.6.2 Nano-BN
1.6.2.1 Hydration
1.6.2.2 Mechanical properties
1.6.2.3 Durability
1.6.2.4 Functional properties
Oil–water separation properties
1.7 Applications of cementitious composites with nanomaterials
1.7.1 Structural health monitoring
1.7.2 Traffic detection
1.7.3 Pollutants purifying
1.7.4 Other applications
1.8 Prospects of cementitious composites with nanomaterials
Acknowledgments
References
2 Nano-tailored high-performance fiber-reinforced cementitious composites
2.1 Introduction
2.2 High-performance fiber-reinforced cementitious composites
2.2.1 Production and design parameters of high-performance fiber-reinforced cementitious composites
2.2.2 Evaluation of the mechanical properties of high-performance fiber-reinforced cementitious composites
2.2.3 Evaluation of the other properties of high-performance fiber-reinforced cementitious composites
2.2.4 Field applications of high-performance fiber-reinforced cementitious composites
2.3 Nanomaterials in high-performance fiber-reinforced cementitious composites
2.3.1 Types of nanomaterials used in high-performance fiber-reinforced cementitious composites
2.3.2 Advantages of using nanomaterials in high-performance fiber-reinforced cementitious composites
2.3.3 Application challenges of using nanomaterials in high-performance fiber-reinforced cementitious composites
2.4 Influence of using nanomaterials in high-performance fiber-reinforced cementitious composites
2.4.1 Early and the hardening stages of nano-tailored high-performance fiber-reinforced cementitious composites
2.4.2 Mechanical and durability properties of nano-tailored high-performance fiber-reinforced cementitious composites
2.4.3 Strain-hardening and crack propagation of nano-tailored high-performance fiber-reinforced cementitious composites
2.4.4 Structural applications of nano-tailored high-performance fiber-reinforced cementitious composites
2.5 Challenges and future perspectives
References
3 Nano-tailored cementitious composites with self-sensing capability
3.1 Introduction
3.2 Nano-piezoresistive materials in cementitious composites: Recent advancements
3.3 Parameters influencing the sensing ability of nano-tailored cementitious composites
3.3.1 Intrinsic properties
3.3.2 Concentration of nanomaterials
3.3.3 Dispersion
3.3.4 Cementitious matrix properties
3.3.5 Surrounding conditions
3.4 Use of nanomaterials in self-sensing cementitious composites
3.4.1 Sensing of deformation and cracking under mechanical loading
3.4.2 Sensing of dynamic actions for traffic monitoring
3.4.3 Special self-sensing applications
3.5 Perspectives and conclusions
References
4 Nanomaterials in self-healing cementitious composites
4.1 Introduction
4.2 Toward self-healing concrete
4.2.1 Autogenous healing
4.2.2 Autonomous healing
4.3 Nanomaterials for self-healing purposes
4.3.1 Nano-sized superabsorbent polymers
4.3.2 Nano-clays
4.3.3 Nano-silica
4.3.4 Carbon nano-tubes
4.3.5 Nano-iron
4.3.6 Nano-alumina
4.3.7 Nano-titania
4.3.8 Nano-fibers
4.4 Conclusions and future perspectives
References
5 Nano-tailored TiO2-based photocatalytic cementitious systems for NOx reduction and air cleaning
5.1 Introduction
5.2 TiO2 as a photocatalyst
5.2.1 Structure of TiO2
5.2.2 Utilization of TiO2 for air purification
5.2.3 Photocatalytic property of TiO2
5.2.3.1 NOx degradation mechanism of TiO2
5.2.3.2 Factors affecting photocatalytic activity
Specific surface area and particle size of TiO2
Crystal structure, crystallite size and crystalline phase of TiO2
Amount of TiO2
Pollutant concentration
Temperature
Irradiation
Humidity
5.3 Utilization of TiO2 in cementitious systems for air purification purposes
5.3.1 Relationship between the quality of distribution of TiO2 particles in cement-based systems and NOx degradation capability
5.3.2 Relationship between the particle size of TiO2 in the cement-based systems and NOx degradation capability
5.3.3 Relationship between the amount of TiO2 in the cement-based systems and NOx degradation capability
5.3.4 Relationship between the type of TiO2 in the cement-based systems and NOx degradation capability
5.3.5 Relationship between the combined presence of metal/non-metals and TiO2 in the cement-based systems and NOx degradati...
5.3.6 Relationship between the mixture composition of cement-based systems and NOx degradation capability
5.3.7 Relationship between the abrasion/wearing/weathering of the surface of cement-based systems and NOx degradation capab...
5.3.8 Relationship between the curing age/condition of cement-based systems and NOx degradation capability
5.3.9 Relationship between the final surface texture of cement-based systems and NOx degradation capability
5.3.10 Relationship between operation-related parameters and NOx degradation capability
5.4 Conclusions
Acknowledgment
References
6 Nano-modification of the rheological properties of cementitious composites
6.1 Introduction
6.2 Theoretical background
6.2.1 Suspension rheology and rheological models for cement-based systems
6.3 Test methods
6.3.1 Rheometer test
6.3.1.1 Coaxial cylinder rheometer
6.3.1.2 Parallel rotating plates rheometers
6.3.1.3 Other rheometers
6.3.2 One-factor tests
6.4 Rheology of nano-modified cementitious composites
6.4.1 Nanoscale particles
6.4.1.1 Nano-silica
6.4.1.2 Nano-titania
6.4.1.3 Nano-zinc oxide
6.4.1.4 Nano-aluminum oxide
6.4.1.5 Nano-zirconium oxide
6.4.1.6 Nano-calcium carbonate
6.4.2 Nano-tubes and fibers
6.4.2.1 Carbon nano-tubes and nano-carbon fibers
6.4.3 Nano-plates
6.4.3.1 Nano-clay
6.4.3.2 Nano-graphene oxide
6.5 Conclusions
References
Further reading
7 Nano-modification in digital manufacturing of cementitious composites
7.1 Introduction
7.2 Implementation of nanomaterials in extrusion-based 3D concrete printing
7.2.1 Printing processes and required material behaviors
7.2.2 Nanomaterials as thixotropic agents
7.2.3 Comparison between polymeric viscosity modifying admixtures and nanomaterials
7.3 Effects of nano-additions on fresh and hardened state of concrete
7.3.1 Nano-silica
7.3.2 Nano-titania
7.3.3 Nano-clay
7.3.4 Nano-alumina
7.3.5 Other mineral additions
7.3.6 Carbon nano-tubes
7.3.7 Carbon nano-fibers, graphene oxide, and carbon black
7.4 Challenges with using nanomaterials as additives
7.4.1 Dispersion of nanomaterials
7.4.2 Safety issues
7.5 Conclusions and future prospects
References
8 Thermal insulation of buildings through classical materials and nanomaterials
8.1 Introduction
8.2 Fundamentals of building physics
8.2.1 Heat transmission
8.2.2 Resistance (R-value)
8.2.3 Thermal conductivity, λ
8.2.4 Thermal transmittance (U-value)
8.2.5 Thermal capacity (C-value)
8.3 Energy-efficient buildings
8.4 Conventional insulation materials and methods
8.4.1 Mineral wool
8.4.2 Expanded polystyrene
8.4.3 Extruded polystyrene
8.4.4 Cellulose
8.4.5 Cork
8.4.6 Polyurethane
8.4.7 Non-zero energy buildings (nZEB)
8.5 Role of nanotechnology for building insulation
8.5.1 Nanotechnology and the construction industry
8.5.2 Nanotechnology applied to thermal insulation
8.5.3 Aerogels
8.5.4 Vacuum insulation panels
8.5.5 Gas-filled panel
8.5.6 Phase change materials
8.5.7 Nano-coatings for buildings
8.5.8 Types of nano-coatings
8.5.8.1 Hydrophilic and hydrophobic coatings
8.5.8.2 Flame-retardant coatings
8.5.8.3 Wear-resistant coatings
8.5.8.4 Antigraffiti coatings
8.5.8.5 Corrosion-resistant coatings
8.6 Energy-efficient coatings
8.6.1 Phase change materials
8.6.2 Electrochromic materials
8.6.3 Photovoltaic coatings
8.6.4 Nano-coating categorization
8.7 Conclusions
References
Further reading
9 Nano-modified green cementitious composites
9.1 Introduction
9.2 Types of nanomaterials used for modification of green cementitious composites
9.2.1 Nano-silica
9.2.2 Nano-titania
9.2.3 Carbon nano-tubes
9.2.4 Carbon nano-fibers
9.2.5 Carbon black nanoparticles
9.2.6 Most relevant lines of study using other nanoparticles
9.3 Properties
9.3.1 Shrinkage
9.3.2 Freeze-thaw damage
9.3.3 Abrasion or erosion
9.3.4 Nanotechnology for cementitious composites to triumph over their chemical deteriorations
9.3.4.1 Alkali–aggregate reactions
9.3.4.2 Sulfate attack
9.3.4.3 Acid attack
9.3.5 Thermal degradation
9.3.6 Compressive strength
9.3.7 Tensile strength
9.3.8 Water sorpitivity
9.3.9 Water absorption
9.3.10 Chloride ion penetration
9.3.11 Permeability
9.3.12 Drying shrinkage
9.3.13 Chloride diffusion
9.3.14 Corrosion
9.3.15 Microstructure
9.4 Conclusions and discussion
References
10 Nano-modified geopolymer and alkali-activated systems
10.1 Introduction
10.2 Use of nanomaterials in cementitious binders
10.3 Properties of geopolymers and alkali-activated systems incorporating nanomaterials
10.3.1 Fresh properties
10.3.2 Mechanical properties
10.3.2.1 Compressive strength of geopolymer concrete containing nano-SiO2
10.3.2.2 OPC- and GGBFS-blended fly ash geopolymer concrete containing nanomaterials
10.3.2.3 Nanomechanical properties of fly ash geopolymer containing nano-SiO2
10.3.3 Microstructure development
10.3.3.1 Scanning electron microscope images
10.3.3.2 X-ray diffraction analysis of geopolymer with nano-SiO2
10.3.3.3 Pore structures of geopolymers with nano-SiO2
10.4 Durability of geopolymers containing nano-SiO2
10.4.1 Carbonation of geopolymers
10.4.2 Sulfate resistance of geopolymers
10.5 Concluding remarks
Acknowledgments
References
11 Nanoscale characterization of cementitious composites
11.1 Introduction
11.2 Nanoscale characterization techniques
11.2.1 Nano-indentation
11.2.2 Atomic force microscopy
11.2.3 Transmission electron microscopy
11.2.4 Nuclear magnetic resonance
11.2.5 Small-angle neutron scattering
11.2.6 X-ray computed nano-tomography
11.2.7 Other characterization techniques
11.3 Challenges and future perspectives
References
12 Low CO2 reactive magnesia cements and their applications via nano-modification
12.1 Introduction
12.2 Production of reactive magnesia cements
12.2.1 Dry route
12.2.2 Wet route
12.3 Hydration and carbonation of reactive magnesia cements
12.3.1 Improving the hydration mechanism and mechanical performance of reactive magnesia cement-based materials via nano-mo...
12.3.2 Improving the carbonation mechanism and mechanical performance of reactive magnesia cement-based materials via nano-...
12.3.3 Limitations of carbonation diffusion
12.4 Durability of reactive magnesia cements
12.4.1 Nitric acid resistance of reactive magnesia cement-based concretes
12.4.2 Chloride, sulfate, freeze-thaw, and seawater resistance of reactive magnesia cement-based concretes
12.4.3 Corrosion resistance of reactive magnesia cement-based pastes
12.5 Nano-tailored strain-hardening reactive magnesia cementitious composites
12.5.1 Mechanical properties
12.5.2 Self-healing performance
12.6 Other applications
12.6.1 Reactive magnesia as alkali activator
12.6.2 Reactive magnesia to accelerate the activator and hydrated magnesium carbonates as nano-seeding materials
12.6.3 Hydraulic binders of MgO–hydromagnesite
12.6.4 Reactive magnesia cement for 3D printing
12.7 Future outlook
Acknowledgments
References
13 Future developments and challenges of nano-tailored cementitious composites
13.1 Background
13.2 Introduction
13.3 Future developments
13.3.1 Factors affecting the design of nano-tailored cement composites
13.3.2 Production of nano-tailored cementitious composites
13.3.3 Experimental techniques for characterization of nano-tailored cementitious composites
13.3.4 Multi-functional properties of nano-tailored cementitious composites
13.3.5 Enhancement mechanism of nano-tailored cementitious composites
13.3.6 Potential use of nano-tailored cementitious composites
13.4 Challenges
13.5 Summary
References
Index
Back Cover




پست ها تصادفی