توضیحاتی در مورد کتاب Recent Trends in Biofilm Science and Technology
نام کتاب : Recent Trends in Biofilm Science and Technology
ویرایش : 1
عنوان ترجمه شده به فارسی : روندهای اخیر در علم و فناوری بیوفیلم
سری :
نویسندگان : Manuel Simoes (editor), Anabel Borges (editor), Lucia Chaves Simoes (editor)
ناشر : Academic Press
سال نشر : 2020
تعداد صفحات : 396
ISBN (شابک) : 0128194979 , 9780128194973
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 12 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
روندهای اخیر در علم و فناوری بیوفیلم به محققان کمک می کند تا در جنبه های اساسی تشکیل بیوفیلم کار کنند و کنترل های بیوفیلم را انجام داده و نتایج را تفسیر کنند. این کتاب دانش قابل توجهی در مورد فرآیندهای تنظیم شکل گیری بیوفیلم ، روشهای مورد استفاده ، نظارت بر توصیف و مدل سازی ریاضی ، مشکلات/مزایای ناشی از حضور آنها در صنایع غذایی ، محیط زیست و زمینه های پزشکی و راهکارهای فعلی و ظهور برای کنترل آنها ارائه می دهد. تحقیقات در مورد بیوفیلم ها در دهه گذشته به سرعت پیشرفت کرده است زیرا بیوفیلم ها نیاز به توسعه ابزارهای تحلیلی جدید و همکاری های جدید بین زیست شناسان ، مهندسان و ریاضیدانان دارند.
فهرست مطالب :
Recent Trends in Biofilm Science and Technology
Copyright
Contributors
Preface
Acknowledgments
1. Biofilm formation and resistance
1.1 Biofilm mode of growth
1.2 Biofilm formation is a multistep process
1.3 Biofilm-specific resistance to antimicrobials
1.4 Conclusions
Acknowledgments
References
2. Nuclear magnetic resonance to study bacterial biofilms structure, formation, and resilience
2.1 Introduction
2.2 Biofilm formation and structure
2.3 The composition of extracellular polymeric substances and how it affects biofilm architecture
2.4 Applications of nuclear magnetic resonance spectroscopy to study biofilms
2.4.1 Several analytical techniques to study and characterize soluble parts of biofilms
2.4.2 Solid-state nuclear magnetic resonance to determine the insoluble constituents of biofilms
2.4.3 Imaging techniques to define biofilm structures and dynamics
2.4.4 Explore diffusion and mass transport within a biofilm
2.4.4.1 Analysis of relaxation data
2.4.4.2 Application of pulsed-field gradient nuclear magnetic resonance
2.4.5 Diffusion-ordered nuclear magnetic resonance spectroscopy applications to determine molecular size
2.5 Nuclear magnetic resonance–based metabolomics approach to study biofilms
2.5.1 Designing a metabolomics experiment
2.5.1.1 Considerations for sample collection and preparation
2.5.1.2 Considerations for nuclear magnetic resonance acquisition
2.5.1.3 Considerations for nuclear magnetic resonance spectral analysis
2.5.2 Multivariate data analysis in metabolomics
2.5.3 Recent advances on nuclear magnetic resonance–based metabolomics applied to biofilms
2.6 Conclusion
References
3. Design and fabrication of biofilm reactors
3.1 Definition of a biofilm reactor
3.2 Design process
3.3 Implementing the design process: industrial surfaces biofilm reactor
3.3.1 Step 1. Identify the list of key attributes for the biofilm reactor
3.3.1.1 Description of cooling towers
3.3.2 Step 2. Using the list of attributes identified in step 1, design a reactor and build a prototype
3.3.3 Step 3. Laboratory validation and design optimization
3.3.4 Step 4. Repeatability testing of the final design
3.3.5 Step 5. Incorporate a manufacturing approach to ready the reactor for commercialization
3.4 Conclusions
Acknowledgments
References
4. Oral biofilms
4.1 Defining the problematic: an introduction
4.2 The oral cavity and its microbiota
4.3 Dental plaque
4.4 Disease-associated oral biofilms
4.4.1 Dental caries
4.4.2 Periodontitis
4.4.3 Periimplantitis
4.5 Non-oral infections associated with oral bacteria
4.6 Conclusions
Acknowledgments
References
5. The role of filamentous fungi in drinking water biofilm formation
5.1 Drinking water concerns
5.2 Microbiology of drinking water distribution systems
5.2.1 Filamentous fungi in drinking water
5.2.2 Biofilms
5.2.2.1 Microbial biofilms in drinking water
5.2.2.2 Filamentous fungi biofilms: can it happen?
5.3 Drinking water distribution systems maintenance
5.3.1 Disinfection
5.4 Bacterial and fungal interactions
Acknowledgments
References
6. Microalgal and cyanobacterial biofilms
6.1 Microalgae and cyanobacteria
6.2 Applications of microalgae and cyanobacteria
6.3 Microalgal/cyanobacterial cultivation
6.4 Microalgal harvesting techniques
6.4.1 Chemical flocculation
6.4.2 Autoflocculation
6.4.3 Bioflocculation
6.4.4 Electrocoagulation–flocculation
6.4.5 Gravitational sedimentation
6.4.6 Flotation
6.4.7 Centrifugation
6.4.8 Filtration
6.5 Factors affecting microalgal/cyanobacterial biofilms
6.5.1 Light
6.5.2 CO2 concentration
6.5.3 pH
6.5.4 Nutrients
6.5.5 Temperature
6.5.6 Surface properties
6.5.7 Hydrodynamic conditions
6.5.8 Extracellular polymeric substances
6.5.9 Microalgal species
6.5.10 Presence of other microorganisms
6.6 The role of microalgal/cyanobacterial biofilms in wastewater treatment processes
6.7 Conclusions
Acknowledgments
References
7. Biofilms in membrane systems for drinking water production
7.1 Introduction
7.2 Methods to evaluate biofilm growth potential of feedwater
7.3 Conventional biofouling control strategies
7.3.1 Preventive biofouling control
7.3.2 Risk of chemical dosage: antiscalants, acids, and biocides
7.3.3 Conventional curative biofouling control: cleanings
7.4 New control strategies
7.4.1 Membrane modification
7.4.2 Feed spacer modification
7.4.3 Advanced cleaning strategies
7.5 Future perspectives
Acknowledgment
References
8. Biofilm fuel cells
8.1 Processes involved in the biofilm of a microbial fuel cell
8.1.1 Bacteria-catalyzed reactions
8.1.2 Mechanisms involved in releasing electrons on the anode surface
8.1.3 The faradaic charge transfer processes
8.1.4 The double-layer capacitance
8.1.5 Mass transfer
8.2 Microbial fuel cell structures
8.3 Integration of main processes in a microbial fuel cell model
8.3.1 Parameter identification
8.3.2 Electrical analogy for small-signal operation
8.3.3 Maximum steady-state power delivered by microbial fuel cell
8.3.4 Sensitivity analysis of the maximum power
8.3.5 Achievable maximum power
8.4 Dimensional electrodes
8.4.1 Problem formulation
8.4.2 Substrate diffusion
8.4.3 Charge transfer
8.4.4 Simulation results
8.5 Conclusions
References
9. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms
9.1 Introduction
9.2 Antibiofilm activities of lactic acid bacteria and their metabolites against foodborne bacterial pathogens
9.2.1 Antibiofilm activity of the in situ lactic acid bacteria presence
9.2.2 Antibiofilm activity of lactic acid bacteria cell-free culture supernatants
9.2.3 Antibiofilm activity of purified lactic acid bacteriocins
9.2.4 Antibiofilm activity of lactic acid bacteria exopolysaccharides
9.2.5 Antibiofilm activity of lactic acid bacteria biosurfactants
9.2.6 Biofilm inhibition trough quorum sensing interference by lactic acid bacteria
9.3 Conclusions
References
10. Role of equipment design in biofilm prevention
10.1 Introduction
10.2 Simple equipment geometries
10.3 Complex equipment design
10.3.1 Immersed surfaces
10.3.2 Air–liquid–material interfaces
10.3.3 Splash areas
10.4 Material properties
10.4.1 Physicochemistry
10.4.2 Topography
10.5 Conclusion
Acknowledgments
References
11. Biofilm control with enzymes
11.1 Biofilms and problems associated with their control
11.2 Biofilm structure and mechanisms of bacterial resistance
11.3 Emergent strategies of biofilm control and eradication
11.4 Antibiofilm enzymes
11.4.1 Biofilm disruption by enzymes
11.4.2 Example applications
11.5 Conclusions
Acknowledgments
References
12. The potential of phytochemical products in biofilm control
12.1 Antimicrobial properties of phytochemicals
12.1.1 Phytochemical classes
12.1.2 Modes of antimicrobial action
12.1.2.1 Interference with DNA synthesis or expression
12.1.2.2 Destabilization of cytoplasmic membrane function
12.1.2.3 Destabilization of metabolic pathways
12.1.2.4 Medicinal properties
12.2 Phytochemicals as biofilm-controlling agents
12.3 Conclusions
Acknowledgments
References
13. Photoinactivation of biofilms
13.1 Photodynamic therapy
13.1.1 Historical remarks
13.1.2 Basic principles and mechanism of photosensitization
13.1.3 Photosensitizers and light sources
13.2 Photoinactivation of biofilms
13.3 Concluding remarks
References
14. The potential of drug repurposing to face bacterial and fungal biofilm infections
14.1 Introduction
14.2 Antimicrobial activity among drugs used for noninfectious human diseases
14.3 Drug repurposing—an alternative strategy against biofilm infections
14.4 Conclusions
Acknowledgments
References
15. In silico development of quorum sensing inhibitors
15.1 Biofilms in health
15.2 Mechanisms of biofilm formation
15.3 Quorum sensing
15.4 In silico methods
15.4.1 Computer-aided drug design: history and methods
15.4.2 Molecular docking
15.4.2.1 Search algorithm
15.4.2.2 Scoring function
15.4.2.3 Consensus scoring
15.4.2.4 Examples of application
15.4.3 Virtual screening
15.4.3.1 Examples of application
15.4.4 Quantitative structure–activity relationships
15.4.4.1 Examples of application
15.5 Conclusions
Acknowledgment
References
16. Challenges and perspectives in reactor scale modeling of biofilm processes
16.1 Introduction
16.2 Mathematical modeling of biofilm reactors
16.2.1 Chemostat modeling
16.2.2 One-dimensional biofilm models
16.2.3 A biofilm reactor model
16.3 Modeling challenges and perspectives
16.3.1 Mathematical and computational challenges
16.3.2 Implicit model assumptions and level of detail in process descriptions
16.3.3 Some parallels and connections between modeling and experimental studies
16.4 Conclusion
Acknowledgments
References
Index
A
B
C
D
E
F
G
H
I
J
L
M
N
O
P
Q
R
S
T
U
V
W
Z
توضیحاتی در مورد کتاب به زبان اصلی :
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians.