توضیحاتی در مورد کتاب Reconfigurable Intelligent Surface-Empowered 6G (Wireless Networks)
نام کتاب : Reconfigurable Intelligent Surface-Empowered 6G (Wireless Networks)
ویرایش : 1st ed. 2021
عنوان ترجمه شده به فارسی : 6G با قابلیت تنظیم مجدد سطح هوشمند (شبکه های بی سیم)
سری :
نویسندگان : Hongliang Zhang, Boya Di, Lingyang Song, Zhu Han
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 260
ISBN (شابک) : 3030734986 , 9783030734985
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
Acronyms
1 Introductions and Basics
1.1 Background and Requirements
1.2 Overview of RISs
1.2.1 History of Meta-Materials
1.2.2 Working Principles
1.2.3 Applications of RISs
1.2.3.1 Wireless Communications
1.2.3.2 RF Sensing
1.3 Fundamentals of RIS-Aided Wireless Communications
1.3.1 Response Model
1.3.1.1 Reflective Type
1.3.1.2 Transmissive Type
1.3.1.3 Hybrid Type
1.3.2 Channel Model
1.3.2.1 Large-Scale Path Loss Model
1.3.2.2 Dyadic Backscatter Channel Model
1.3.2.3 Spatial Scattering Channel Model
1.3.3 Comparisons with Existing Techniques
1.3.3.1 RIS vs. Massive MIMO
1.3.3.2 RIS vs. Relay
1.3.3.3 RIS vs. Backscatter
References
2 RIS Aided MIMO Communications
2.1 Limited Phase Shifts: How Many Phase Shifts Are Enough?
2.1.1 Motivations
2.1.2 System Model
2.1.2.1 RIS Assisted Communication Model
2.1.2.2 Reflection Dominant Channel Model
2.1.3 Achievable Data Rate Analysis
2.1.4 Analysis on the Number of Phase Shifts
2.1.5 Simulation Results
2.1.6 Summary
2.1.7 Appendix
2.2 Size Effect: How Many Reflective Elements Do We Need?
2.2.1 Motivation
2.2.2 System Model
2.2.2.1 Scenario Description
2.2.2.2 Channel Model
2.2.2.3 Achievable Rate with Zero-Forcing Precoding
2.2.3 Analysis on Asymptotic Capacity
2.2.4 Analysis on the Number of Reflective Elements
2.2.4.1 Lower Bound of ε
2.2.4.2 Solution of Problem (2.51)
2.2.5 Simulation Results
2.2.6 Summary
2.3 Coverage Extension: RIS Orientation and Location Optimization
2.3.1 Motivations
2.3.2 System Model
2.3.2.1 Scenario Description
2.3.2.2 Channel Model
2.3.3 Cell Coverage Analysis
2.3.3.1 Optimal Phase Shifts of RIS
2.3.3.2 Cell Coverage Analysis
2.3.4 RIS Placement Optimization
2.3.4.1 Coverage Maximization Problem Formulation
2.3.4.2 Coverage Maximization Algorithm Design
2.3.5 Simulation Results
2.3.6 Summary
2.4 Hybrid Beamforming Design
2.4.1 Motivations
2.4.2 System Model
2.4.2.1 Scenario Description
2.4.2.2 Reconfigurable Intelligent Surface with Limited Discrete Phase Shifts
2.4.2.3 Reflection-Dominated Channel Model
2.4.3 RIS-Based Hybrid Beamforming and Problem Formulation for Multi-User Communications
2.4.3.1 Hybrid Beamforming Scheme
2.4.3.2 Sum Rate Maximization Problem Formulation
2.4.3.3 Problem Decomposition
2.4.4 Sum Rate Maximization Algorithm Design
2.4.4.1 Digital Beamforming Algorithm
2.4.4.2 RIS Configuration Based Analog Beamforming Algorithm
2.4.4.3 Overall Algorithm Description
2.4.4.4 Convergence and Complexity Analysis
2.4.5 Performance Analysis of RIS-Based Multi-User Communications
2.4.5.1 Comparison with Traditional Hybrid Beamforming
2.4.5.2 Special Case: Pure Line-of-Sight Transmissions
2.4.6 Simulation Results
2.4.7 Summary
2.5 Full-Dimensional Coverage Extension
2.5.1 Motivations
2.5.2 Intelligent Omni-Surface
2.5.3 System Model
2.5.3.1 Scenario Description
2.5.3.2 Channel Model
2.5.3.3 IOS-Based Beamforming
2.5.4 Problem Formulation and Decomposition
2.5.4.1 Problem Formulation
2.5.4.2 Problem Decomposition
2.5.5 Sum-Rate Maximization: Algorithm Design
2.5.5.1 Digital Beamforming Optimization at the SBS
2.5.5.2 Analog Beamforming Optimization at the IOS
2.5.5.3 Joint SBS Digital Beamforming and IOS Phase Shift Optimization
2.5.6 Performance Analysis of the IOS-Assisted Communication System
2.5.6.1 Analysis of the Phase Shift Design
2.5.6.2 Analysis of the Transmission/Reflection Power Ratio
2.5.7 Simulation Results
2.5.8 Summary
References
3 Convergences of RISs with Existing Wireless Technologies
3.1 RIS Aided Device-to-Device Communications
3.1.1 Motivations
3.1.2 System Model
3.1.2.1 System Description
3.1.2.2 Interference Analysis
3.1.3 Problem Formulation
3.1.3.1 Sum Rate Maximization Problem Formulation
3.1.3.2 Problem Decomposition
3.1.4 Sum Rate Maximization Algorithm
3.1.4.1 Power Allocation Sub-problem Algorithm Design
3.1.4.2 Discrete Phase Shift Optimization Sub-problem Algorithm Design
3.1.4.3 Sum Rate Maximization
3.1.4.4 Convergence, Feasibility and Complexity Analysis
3.1.5 Performance Evaluation
3.1.5.1 Simulation Setup
3.1.5.2 Performance Evaluation
3.1.6 Summary
3.2 RIS Aided Cell-Free MIMO
3.2.1 Motivations
3.2.2 System Model
3.2.2.1 Scenario Description
3.2.2.2 RIS Reflection Model
3.2.2.3 Channel Model
3.2.3 Hybrid Beamforming and Problem Formulation
3.2.3.1 Hybrid Beamforming Scheme
3.2.3.2 Energy Efficiency Maximization Problem Formulation
3.2.3.3 Problem Decomposition
3.2.4 Energy Efficiency Maximization Algorithm Design
3.2.4.1 Digital Beamforming Design
3.2.4.2 RIS-Based Analog Beamforming Design
3.2.4.3 Overall Algorithm Description
3.2.5 Theoretical Analysis of RIS Aided Cell-Free System
3.2.5.1 Properties of the Energy Efficiency Maximization Algorithm
3.2.5.2 Performance Analysis of RIS Aided Cell-Free System
3.2.6 Simulation Results
3.2.7 Summary
3.2.8 Appendix
3.3 RIS Aided Spatial Equalization
3.3.1 Motivations
3.3.2 System Model
3.3.3 Problem Formulation
3.3.4 Algorithm Design
3.3.5 Simulation Results
3.3.6 Summary
3.3.7 Appendix
References
4 RIS Aided RF Sensing and Localization
4.1 2D Sensing
4.1.1 Motivations
4.1.2 System Design
4.1.2.1 RIS Model
4.1.2.2 Channel Model
4.1.2.3 Protocol Design
4.1.3 Problem Formulation of RIS-Based Posture Recognition
4.1.3.1 Problem Formulation
4.1.3.2 Problem Decomposition
4.1.4 Algorithms for Configuration Matrix and Decision Function Optimizations
4.1.4.1 Configuration Optimization Algorithm
4.1.4.2 Supervised Learning Algorithm for Solving (P4.3)
4.1.5 Performance Analysis
4.1.5.1 Convergence of FCAO Algorithm
4.1.5.2 Convergence of Supervised Learning Algorithm
4.1.5.3 Optimality of Decision Function
4.1.5.4 Upper-Bound on Minimal Average False Recognition Cost
4.1.6 System Implementation
4.1.6.1 Implementation of RIS
4.1.6.2 Implementation of Transceiver Module
4.1.7 Simulation and Experimental Results
4.1.7.1 System Setting for Simulation and Experiment
4.1.7.2 Simulation Results
4.1.7.3 Experimental Results
4.1.8 Summary
4.1.9 Appendix
4.2 3D Sensing
4.2.1 Motivations
4.2.2 System Model
4.2.2.1 RIS Model
4.2.2.2 Channel Model
4.2.2.3 RF Sensing Protocol
4.2.3 Problem Formulation
4.2.4 Algorithm Design
4.2.4.1 MDP Formulation
4.2.4.2 Progressing Reward Policy Gradient Algorithm
4.2.5 Algorithm Analysis
4.2.5.1 Computational Complexity
4.2.5.2 Convergence Analysis
4.2.5.3 Lower Bound for Sensing Accuracy
4.2.6 Simulation and Evaluation
4.2.6.1 Simulation Settings
4.2.6.2 Results
4.2.7 Summary
4.3 Indoor Localization
4.3.1 Motivations
4.3.2 Related Work
4.3.3 System Overview
4.3.4 Radio Map Preparation Phase
4.3.4.1 Building an RIS
4.3.4.2 Changing the RSS Value at a Location
4.3.4.3 RSS Modeling
4.3.4.4 Compressive Construction Technique
4.3.5 Fine-Grained Localization Phase
4.3.5.1 Soft Localization
4.3.5.2 RIS Configuration Selection
4.3.5.3 Termination of the Localization Phase
4.3.6 Implementation
4.3.6.1 RIS Module
4.3.6.2 Access Point and User Modules
4.3.6.3 Workflow Setting
4.3.7 Evaluation
4.3.7.1 Experimental Setup
4.3.7.2 Results for Radio Map Construction
4.3.7.3 Results for Single User Localization
4.3.7.4 Results for Multiple User Localization Without Obstruction
4.3.7.5 Results for Multiple User Localization with Obstruction
4.3.8 Discussion
4.3.9 Summary
4.3.10 Appendix
References