توضیحاتی در مورد کتاب Renewable energy conversion systems: Technologies, Design and Operation
نام کتاب : Renewable energy conversion systems: Technologies, Design and Operation
عنوان ترجمه شده به فارسی : سیستم های تبدیل انرژی های تجدیدپذیر: فناوری ها، طراحی و بهره برداری
سری :
نویسندگان : Muhammad Kamran, Muhammad Rayyan Fazal
ناشر : Academic Press
سال نشر : 2021
تعداد صفحات : 302
ISBN (شابک) : 0128235381 , 9780128235386
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 6 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Front Cover
Renewable Energy Conversion Systems
Copyright Page
Dedication
Contents
1 Fundamentals of renewable energy systems
1.1 Introduction
1.1.1 Why renewables
1.1.2 Types of energy
1.1.3 Conventional and renewable energy
1.1.4 SWOT analysis of the renewable energy
1.1.4.1 Strength
1.1.4.2 Weakness
1.1.4.3 Opportunities
1.1.4.4 Threats
1.1.5 Global warming and climate change
1.1.6 World energy transformation by 2050
1.1.7 Prospects of renewable energy in the world
1.1.7.1 Solar energy
1.1.7.2 Wind energy
1.1.7.3 Hydropower
1.1.7.4 Bioenergy
1.1.7.5 Geothermal
1.1.8 The structure of the book
References
2 Thermodynamics for renewable energy systems
2.1 Introduction
2.2 Thermodynamic system
2.2.1 Open system
2.2.2 Closed system
2.2.3 Isolated system
2.3 Heat capacity
2.3.1 Heat capacity at constant volume (CV)
2.3.2 Heat capacity at constant pressure (CP)
2.3.3 Mayer’s equation
2.4 Phase change and latent heat
2.4.1 Latent heat of fusion
2.4.2 Latent heat of evaporation
2.5 Zeroth law of thermodynamics
2.6 The first law of thermodynamics
2.6.1 Isothermal process
2.6.2 Isobaric process
2.6.3 Isochoric process
2.6.4 Adiabatic process
2.7 The second law of thermodynamics
2.7.1 Kelvin–Planck statement
2.7.2 Clausius statement
2.8 Third law of thermodynamics
2.9 Thermodynamic cycles
2.9.1 Solar thermal Brayton cycle (GAS)
2.9.2 Solar thermal organic Rankine cycle (STEAM)
2.9.3 Solar combined power cycle
Problems
References
3 Power electronics for renewable energy systems
3.1 Introduction
3.2 Solid-state devices
3.2.1 Silicon controlled rectifier (Thyristor)
3.2.2 Gate turn-off thyristor
3.2.3 Silicon controlled switch
3.2.4 DIAC
3.2.5 TRIAC
3.3 Rectifiers (AC–DC converters)
3.3.1 Half-wave uncontrolled rectifier with resistive load
3.3.2 Half-wave uncontrolled rectifier with inductive load
3.3.3 Half-wave uncontrolled rectifier with inductive load and freewheeling diode
3.3.4 Half-wave controlled rectifier with resistive load
3.3.5 Half-wave controlled rectifier with an inductive load
3.3.6 Half-wave controlled rectifier with inductive load and a freewheeling diode
3.4 Converters (DC–DC converters)
3.4.1 Buck converters
3.4.2 Boost converters
3.4.3 Buck-Boost converters
3.4.4 Cuk converters
3.5 Inverters (DC–AC inverters)
3.5.1 H-Bridge inverter
3.5.2 Multilevel inverter
3.5.2.1 Diode clamped multilevel inverters
3.5.2.2 Cascaded H-Bridge multilevel inverters
3.5.2.3 Flying capacitor multilevel inverters
3.6 Cycloconverters (AC–AC converters)
Problems
References
4 Solar energy
4.1 Introduction
4.2 Solar thermal
4.2.1 Solar parabolic trough
4.2.2 Solar tower
4.2.3 Solar parabolic dish
4.2.4 Solar cooker
4.2.5 Solar water heater
4.2.6 Solar dryer
4.3 Solar photovoltaic
4.3.1 Modeling of PV cell
4.3.1.1 Photocurrent
4.3.1.2 Forward-biased diode
4.3.1.3 Series resistance
4.3.1.4 Shunt resistance
4.3.1.5 Open-circuit voltage
4.3.1.6 Short-circuit current
4.3.1.7 The efficiency of a solar cell
4.3.1.8 Fill factor
4.4 Effect of temperature on solar cell
4.5 Effect of irradiance on solar cell
4.6 Series and parallel connection of solar cells
4.7 Solar tracker
4.7.1 Single-axis solar tracker
4.7.2 Dual-axis solar tracker
4.8 Maximum power point tracker
4.8.1 Perturb and observe
4.8.2 Incremental conductance
4.9 Off-grid PV system
4.10 Grid-connected PV system
4.11 Hybrid PV systems
4.11.1 Series hybrid energy system
4.11.2 Parallel hybrid energy system
4.11.3 Switched hybrid energy system
4.12 Distributed generation
4.13 Optimization of hybrid renewable energy system
4.13.1 HOMER pro
4.13.2 iHOGA
4.13.3 Hybrid2
4.13.4 RETScreen
4.13.5 TRNSYS
4.14 Optimization of a hybrid energy system in HOMER: a case study
4.14.1 Load assessment
4.14.2 Resource assessment
4.14.2.1 Solar photovoltaic
4.14.2.2 Wind power
4.14.2.3 Hydro energy
4.14.3 Optimization results
References
5 Wind energy
5.1 Introduction
5.2 Wind energy fundamentals
5.2.1 Types of winds: meteorology
5.2.2 Capturing the wind: wind speed, energy, and power
5.3 Potential and prediction of wind energy
5.3.1 Wind assessment
5.3.2 Turbine power assessment
5.3.2.1 Betz law
5.3.3 Estimating wind power
5.3.4 Predicting wind energy
5.4 Wind energy conversion systems
5.4.1 Basic components of wind turbine
5.4.1.1 Turbine
5.4.1.2 Yaw control system
5.4.1.3 The nacelle
5.4.1.4 The tower
5.4.1.5 Control mechanism
5.4.2 Wind turbine classification
5.4.2.1 Axis position-based classification
5.4.2.2 Size-based classification
5.4.2.3 Speed-based classification
Fixed-speed wind turbines
Variable-speed wind turbines
5.4.2.4 Location-based classification
5.4.3 Generator types
5.4.3.1 Synchronous generators
5.4.3.2 Induction generators
5.4.4 Electrical systems in wind turbines
5.4.5 Power electronics integration
5.4.6 Economics
5.5 Reliability science of wind turbines
5.6 Energy storage options of wind turbines
5.7 Application of wind turbines
References
6 Hydro energy
6.1 Introduction
6.2 Basic components of the hydropower plant
6.2.1 Dam
6.2.2 Penstock
6.2.3 Turbines
6.2.3.1 Impulse turbines
6.2.3.2 Reaction turbines
6.2.3.3 Tailrace
6.2.3.4 Electric generators
6.3 Small/micro hydropower
6.4 Designing of the small/micro hydropower system
6.4.1 Flow duration curve
6.4.2 Weir and open channel
6.4.3 Trash rack design
6.4.4 Penstock design
6.4.4.1 Penstock diameter
6.4.4.2 Penstock thickness
6.4.4.3 Penstock cross-sectional area
6.4.4.4 Water velocity through the penstock
6.4.5 Penstock losses
6.4.5.1 Head friction losses
6.4.5.2 Inlet losses
6.4.5.3 Valve losses
6.4.6 Hydraulic power
6.4.7 Turbine power
6.4.8 Turbine speed
6.4.9 Specific speed
6.4.10 Turbine selection
6.5 SWOT analysis of hydropower
6.5.1 Strengths
6.5.2 Weaknesses
6.5.3 Opportunities
6.5.4 Threats
References
7 Fuel cell
7.1 Introduction
7.2 Working principle of a fuel cell
7.3 Maximum efficiency of a fuel cell
7.3.1 Enthalpy of a reaction
7.3.2 The entropy of a reaction
7.3.3 Gibbs free energy
7.3.4 The efficiency of a fuel cell
7.4 Fuel cell potential
7.4.1 At anode
7.4.2 At cathode
7.5 Terminal voltage of the fuel cell
7.5.1 Activation losses
7.5.2 Concentration losses
7.5.3 Ohmic losses
7.6 Equivalent circuit model of the fuel cell
7.7 Types of fuel cell
7.7.1 Direct methanol fuel cell
7.7.2 Phosphoric acid fuel cell
7.7.3 Alkaline fuel cell
7.7.4 Molten carbonate fuel cell
7.7.4.1 Solid oxide fuel cell
8 Bioenergy
8.1 Introduction
8.2 Biomass
8.2.1 Palletization
8.3 Biogas
8.3.1 Anaerobic digestion process
8.3.1.1 Hydrolysis
8.3.1.2 Acidogenesis
8.3.1.3 Acetogenesis
8.3.1.4 Methanogenesis
8.4 Biodiesel
8.4.1 Physical characteristics of biodiesel
8.4.1.1 Flashpoint
8.4.1.2 Boiling point
8.4.1.3 Cloud point
8.4.1.4 Pour point
8.4.1.5 Calorific value
8.5 Hydrogen production
8.5.1 Biological processes
8.5.1.1 Biophotolysis
8.5.1.2 Dark fermentation
8.5.1.3 Photofermentation
8.5.2 Thermochemical process
8.5.2.1 Pyrolysis
8.5.2.2 Gasification
8.5.3 Water-splitting
8.5.3.1 Electrolysis
8.5.3.2 Thermolysis
8.5.3.3 Photolysis
8.6 Economic considerations
8.7 Conclusion
References
9 Geothermal energy
9.1 Introduction
9.2 Geothermal resources
9.3 Geothermal energy conversion mechanism
9.3.1 Dry steam power plants
9.3.2 Flash steam power plants
9.3.3 Binary cycle power plants
9.3.4 Geothermal combined cycle power plants
9.4 Use of geothermal energy
9.4.1 Indirect uses of geothermal energy
9.4.2 Direct uses of geothermal energy
9.5 Environmental effects
References
Index
Back Cover