توضیحاتی در مورد کتاب Rhythms in Healthcare
نام کتاب : Rhythms in Healthcare
عنوان ترجمه شده به فارسی : ریتم ها در مراقبت های بهداشتی
سری : Studies in Rhythm Engineering
نویسندگان : M. Shamim Kaiser, Mufti Mahmud, Shamim Al Mamun
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 174
ISBN (شابک) : 9811941882 , 9789811941887
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
Editors and Contributors
1 Is Biological Rhythm Associated with the Mortality of COVID-19?
1 Introduction
2 Methods
2.1 Biological Rhythm
2.2 Data Analysis
3 Results
4 Discussion
References
2 Deep Learning in Biomedical Devices: Perspectives, Applications, and Challenges
1 Introduction
2 Internet of Healthcare Things (IoHT)
3 IoHT and Biomedical Devices
4 Overview of Deep Learning
4.1 Basic Framework
4.2 Convolutional Neural Network (CNN)
4.3 Recurrent Neural Network (RNN)
4.4 Autoencoders (AE)
4.5 Deep Boltzmann Machine (DBM)
4.6 Deep Belief Network (DBN)
5 Deep Learning in Biomedical Devices
6 Open Issues and Future Perspectives
7 Conclusion
References
3 Effect of 3D-Multiple Object Tracking Training on Manual Dexterity in Elderly Adults with Dementia and Mild Cognitive Impairment
1 Introduction
2 Materials and Methods
2.1 Participants
3 Measures
3.1 Montreal Cognitive Assessment (MoCA Version 7.1)
3.2 Grooved Pegboard Test (GPT)
3.3 Minnesota Manual Dexterity Test (MMDT)
4 Training Procedure
4.1 3D-Multiple Object Tracking (3D-MOT)
5 Statistical Analysis
6 Results
7 Discussion
References
4 Rhythmic Pattern of EEG for Identifying Schizophrenia
1 Introduction
2 Methods
2.1 Measures of Directed Connectivity
3 Experimental Results
3.1 Dataset
3.2 Comparison of Different Models for Biomedical Application
4 Discussions
5 Conclusion
6 Future Work
References
5 Prior Prediction and Management of Autism in Child Through Behavioral Analysis Using Machine Learning Approach
1 Introduction
2 Prior Prognostic of Autism
2.1 Behavioral Analysis
2.2 Screening and Diagnosis of Autism Spectrum Disorder
3 Research Methodology
3.1 Data Collection and Description
3.2 Machine Learning Classifiers and Evaluation Metrics
3.3 Implementation
4 Experimental Result and Discussion
5 Conclusions
References
6 DNN and LiDAR Sensor Based Crowd Avoidance Method for Nurse-Following Robot in Healthcare
1 Introduction
2 Related Work
3 The Crowd Avoidance Algorithm
3.1 Person Tracking
3.2 Locate the Target Nurse and Pedestrian Person in the Space
3.3 Line Following Method
3.4 Circle Following Method
4 Experiments of the Crowd Avoidance
4.1 Hardware
4.2 Experimental Conditions
4.3 Experimental Results
5 Conclusions and Future Work
References
7 Investigation on Heart Attack Prediction Based on the Different Machine Learning Approaches
1 Introduction
2 Machine Learning Algorithms
2.1 Support Vector Machine
2.2 Logistic Regression
2.3 K-Nearest Neighbor Algorithm
2.4 Random Forest Algorithm
2.5 Naive Bayes Classifier
2.6 Decision Tree Classifier
3 Dataset
4 Methodology
5 Result and Discussion
6 Conclusion
References
8 Wearable Devices for Monitoring Vital Rhythm and Earlier Disease Diagnosis of Treatment
1 Introduction
2 Methods and Materials
2.1 Review Methodology
2.2 Wearable Devices
2.3 Vital Rhythm
2.4 Disease Diagnosis from Vital Rhythm
3 Discussions
4 Limitations and Challenges
5 Conclusion
References
9 Post-quantum Signature Scheme to Secure Medical Data
1 Introduction
2 Background and Motivation
3 Literature Review
4 Preliminaries
4.1 Keccak
4.2 Skein
4.3 Merkle Tree
5 Proposed Signature Scheme
5.1 Proposed MMT Signature Scheme for Multiple Transactions
5.2 Proposed MMT Signature Scheme for Single Transaction
5.3 Proposed Secure Blockchain for Medical Data Using MMT Signature Scheme
6 Security and Performance Analysis
6.1 Performance Analysis
6.2 Security Analysis
6.3 Trade-Off Between Performance and Security
7 Conclusion
8 Future Work
References
10 Medical Image Analysis Using Machine Learning and Deep Learning: A Comprehensive Review
1 Introduction
2 Medical Imaging Types
3 Overview of Machine Learning and Deep Learning
4 Classifier
5 Performance Metrics
6 ML and DL Approaches in Tuberculosis Detection
7 ML and DL Approaches in Lung Cancer Detection
8 ML and DL Approaches in COVID-19 Detection
9 ML and DL Approaches in Pneumonia Detection
10 Discussion
11 Conclusion
References