Semantic Models in IoT and eHealth Applications

دانلود کتاب Semantic Models in IoT and eHealth Applications

56000 تومان موجود

کتاب مدل‌های معنایی در برنامه‌های IoT و سلامت الکترونیک نسخه زبان اصلی

دانلود کتاب مدل‌های معنایی در برنامه‌های IoT و سلامت الکترونیک بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 1


توضیحاتی در مورد کتاب Semantic Models in IoT and eHealth Applications

نام کتاب : Semantic Models in IoT and eHealth Applications
عنوان ترجمه شده به فارسی : مدل‌های معنایی در برنامه‌های IoT و سلامت الکترونیک
سری : Intelligent Data-Centric Systems
نویسندگان : , ,
ناشر : Academic Press
سال نشر : 2022
تعداد صفحات : 289 [292]
ISBN (شابک) : 0323917739 , 9780323917735
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 13 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




مدل‌های معنایی در برنامه‌های IoT و eHealth نقش کلیدی مدل‌سازی وب معنایی در فناوری‌های سلامت الکترونیک، از جمله نظارت از راه دور، سلامت تلفن همراه، داده‌های ابری و هستی‌شناسی‌های زیست پزشکی را بررسی می‌کند. این کتاب چالش ها و مسائل مختلف را از طریق دریچه مطالعات موردی مختلف سیستم های مراقبت های بهداشتی که در حال حاضر این فناوری ها را اتخاذ می کنند، بررسی می کند. فصل‌ها مفاهیم تعامل معنایی را در یک مجموعه مدل مراقبت‌های بهداشتی معرفی می‌کنند و بررسی می‌کنند که چگونه نمایش معنایی برای طبقه‌بندی، تجزیه و تحلیل و درک حجم عظیمی از داده‌های زیست پزشکی که توسط دستگاه‌های پزشکی متصل تولید می‌شود، کلیدی است.

< span> نظارت مداوم بر سلامت یک راه حل قوی است که می تواند خدمات سلامت الکترونیک را از طریق استفاده از دستگاه های مبتنی بر اینترنت اشیا که داده های حسگر را برای تشخیص، نظارت و درمان کارآمد سلامت جمع آوری می کند، به جامعه ارائه دهد. همه این داده‌های جمع‌آوری‌شده باید در قالب هستی‌شناسی‌هایی ارائه شوند که سنگ بنای وب معنایی برای اشتراک دانش، یکپارچه‌سازی اطلاعات و استخراج اطلاعات در نظر گرفته می‌شوند.


فهرست مطالب :


Front Cover
Semantic Models in IoT and eHealth Applications
Copyright
Contents
Contributors
Acknowledgments
1 Semantic modeling for healthcare applications: an introduction
1.1 Introduction
1.2 Literature review
1.3 Background
1.3.1 Semantic web and terminology
1.3.2 Web-of-Things
1.3.3 Semantic Web-of-Things
1.3.4 IoT-based semantic models
1.3.4.1 General-purpose IoT semantic models
SSN/SOSA
SAREF ontology
Time
QUDT
1.3.4.2 Domain-specific IoT-based semantic models
1.4 Semantic modeling of data
1.4.1 Semantic annotation
1.4.2 Semantic linking
1.4.2.1 Construction of a semantic model
1.4.3 Semantic representation
1.5 Conclusions
References
2 Role of IoT and semantics in e-Health
2.1 Introduction
2.2 Internet of Things in the healthcare industry
2.2.1 Characteristics of IoT ontology and challenges in e-Health
2.2.2 Characteristics of IoT in the healthcare industry
2.2.3 Challenges of the IoT in e-Health
2.3 Middleware architectures for the IoT in e-Health
2.3.1 An overview of IoT middleware solutions
2.3.2 Middleware solutions in healthcare
2.4 Semantic interoperability of objects in e-Health
2.5 Interoperability in healthcare
2.5.1 Interoperability levels
2.5.2 Turnista\'s model
2.5.3 Semantic web
2.5.4 OpenEHR archetype
2.6 Conclusion
References
3 Evaluation and visualization of healthcare semantic models
3.1 Introduction and motivation
3.2 Role of visualization: background
3.2.1 Visualization concept and its cognitive capacity
3.2.2 Visualization in ICT, healthcare, and biomedical sectors
3.2.3 Basics of visualization
3.2.4 Visualization of semantic models
3.2.5 Visualization of ontology and semantic model in healthcare and (bio)medical sectors
3.2.5.1 Task-dependency of visualization
3.2.5.2 Visualization of semantic models: classification by the visualization technique
3.3 Requirement of evaluation
3.3.1 Taxonomy of the evaluation
3.3.1.1 Recommenders
3.3.1.2 Ontology evaluation tool
3.3.1.3 Ontology visualization
3.3.1.4 Briefly on other approaches
3.3.1.5 Feature-based evaluation of ontology visualization tools
3.3.1.6 Taxonomy of evaluation techniques
3.3.2 How to make a choice of a visualization tool
3.4 Discussion
3.5 Conclusion
Acknowledgments
References
4 Role of connected objects in healthcare semantic models
4.1 Introduction
4.2 The EHR ecosystem
4.2.1 OpenEHR
4.2.2 Health level seven international (HL7)
4.2.3 ISO 13606
4.2.4 Semantic models in healthcare
4.3 Connected objects in healthcare
4.3.1 Internet of things
4.3.2 Semantic sensor network
4.3.3 M2M
4.3.4 oneM2M
4.3.5 Smart appliances reference ontology
4.4 Semantic-based connected objects in e-Health
4.4.1 Semantic integration of IoT and EHR systems
4.4.2 Data-centric e-Health perspective
4.4.2.1 Modeling
4.4.2.2 Preprocessing
4.4.2.3 Persistence
4.5 Concluding remarks
References
5 The security and privacy aspects in semantic web enabled IoT-based healthcare information systems
5.1 Introduction and motivation
5.2 Security and privacy requirements in IoT
5.2.1 Security and privacy challenges in IoT
5.2.2 IoT security attacks and threats
5.3 Security and privacy concerns in IoT-based healthcare systems
5.4 Semantic web based solutions for security and privacy
5.5 Semantic web based solutions for the security and privacy aspects in the IoT ecosystem
5.5.1 Security oriented solutions
5.5.2 Privacy oriented solutions
5.6 Challenges and future directions for the security and privacy concerns in IoT-based healthcare systems
5.7 Conclusions
References
6 Knowledge-based system as a context-aware approach for the Internet of medical connected objects
6.1 Introduction
6.2 Knowledge-based system in health
6.3 Context modeling using knowledge graphs
6.4 Knowledge graphs
6.5 Integrated domain model
6.6 Discussion and conclusions
References
7 Toward a knowledge graph for medical diagnosis: issues and usage scenarios
7.1 Introduction
7.2 Related work
7.3 A knowledge graph for medical diagnosis
7.4 Issues for ontology alignment
7.4.1 Alignment between DOID and SYMP ontologies
7.4.2 Issues for ICD-10 and DOID-SYMP alignment
7.5 Usage scenarios for the medical diagnosis knowledge graph
7.5.1 Electronic health records interoperability
7.5.2 Automatic reasoning in telemedicine
7.5.3 Medical insurance management
7.6 Conclusion
References
8 A naturopathy knowledge graph and recommendation system to boost the immune system
8.1 Introduction
8.2 Related work: food knowledge graphs and recommendation systems
8.2.1 Food knowledge graphs: ontologies and data sets
8.2.2 Food recommender systems
8.2.3 Food information extraction with natural language processing: named-entity recognition
8.2.4 Shortcomings of the literature study
8.3 Naturopathy knowledge graph and recommendation system to boost immune system: knowledge-based immune system suggestion
8.3.1 Collecting food ontologies: LOV4IoT-food ontology catalog
8.3.2 Naturopathy knowledge graph: extracting and integrating food ontologies and data sets
8.3.3 Knowledge-based immune system suggestion: ontology-based food recommendation to boost the immune system
8.3.4 Evaluation
8.4 Conclusion and future work
8.5 Disclaimer
8.A Demonstrators
References
9 SAREF4EHAW-compliant knowledge discovery and reasoning for IoT-based preventive health and well-being
9.1 Introduction
9.2 Related work: ontology-based IoT project catalog for health
9.2.1 Ontology-based IoT project catalog for health with LOV4IoT-health
9.2.2 Standards: ISO and ETSI SmartM2M
9.2.2.1 ETSI SmartM2M SAREF4EHAW for e-Health/Aging-well
9.2.2.2 ISO 13606-5:2010 health informatics – electronic health record communication standards
9.2.3 Health knowledge graphs
9.3 Knowledge discovery and reasoning for preventive health and well-being
9.3.1 ETSI SmartM2M SAREF-compliant semantic sensor health dictionary
9.3.2 Ontology visualization for preventive health and well being
9.3.3 Semi-automatic knowledge extraction from preventive health and well being ontologies
9.3.3.1 Extracting specific terms from ontology code
9.3.3.2 Extracting knowledge from scientific publications
9.3.3.3 Usage of semiautomatic extraction within reasoning demonstrators
9.3.4 Knowledge discovery and reasoning for preventive health and well-being (S-LOR health)
9.3.5 Keeping track of provenance metadata
9.4 End-to-end knowledge-based health and well-being use cases
9.5 Key contributions and lessons learned
9.6 Conclusion and future work
Acknowledgments
9.A IoT-based ontologies for health
9.A.1 Ambient assisted-living (AAL)/ remote monitoring for health ontologies using IoT technologies
9.A.2 Disease-related ontologies
9.A.2.1 Cardiology-related ontologies
9.A.2.2 Diabetes and diet-related ontologies
9.A.2.3 Dementia models, ontologies or KGs: Parkinson\'s, Alzheimer\'s, etc.
9.A.3 Electronic Health Records (EHR) ontologies
9.A.4 Wearable ontologies
9.A.5 Ontologies from European projects: ACTIVAGE and HEARTFAID
9.A.6 Other ontologies
References
10 Reasoning over personalized healthcare knowledge graph: a case study of patients with allergies and symptoms
10.1 Introduction
10.2 Related work
10.3 A reasoner for personalized health knowledge graph
10.4 Implementation, results, and evaluation
10.4.1 Implementation
10.4.2 KAO ontology evaluation
10.5 Discussions and extensions for future work
10.6 Conclusion
Acknowledgments
10.A Listings: code example
10.B Tutorials: SPARQL queries and End-to-End Scenarios
References
Web references
11 Integrated context-aware ontology for MNCH decision support
11.1 Introduction
11.2 Related works
11.3 Preposition-enabled spatial ontology: PeSONT
11.3.1 Concept extraction
11.3.2 Term formalization
11.3.3 Location visualization
11.4 PeSONT documentation
11.5 Discussion
11.6 Conclusions
Acknowledgments
References
12 IntelliOntoRec: a knowledge infused semiautomatic approach for ontology formulation in healthcare and medical science
12.1 Introduction
12.2 Related works
12.3 Proposed model
12.3.1 Phase 1
12.3.2 Transformer architecture
12.3.3 Phase 2
12.3.4 Phase 3
12.4 Implementation
12.5 Results
12.6 Conclusion
References
Index
Back Cover

توضیحاتی در مورد کتاب به زبان اصلی :


Semantic Models in IoT and eHealth Applications explores the key role of semantic web modeling in eHealth technologies, including remote monitoring, mobile health, cloud data and biomedical ontologies. The book explores different challenges and issues through the lens of various case studies of healthcare systems currently adopting these technologies. Chapters introduce the concepts of semantic interoperability within a healthcare model setting and explore how semantic representation is key to classifying, analyzing and understanding the massive amounts of biomedical data being generated by connected medical devices.

Continuous health monitoring is a strong solution which can provide eHealth services to a community through the use of IoT-based devices that collect sensor data for efficient health diagnosis, monitoring and treatment. All of this collected data needs to be represented in the form of ontologies which are considered the cornerstone of the Semantic Web for knowledge sharing, information integration and information extraction.




پست ها تصادفی