توضیحاتی در مورد کتاب Sensors for Ranging and Imaging (Electromagnetic Waves)
نام کتاب : Sensors for Ranging and Imaging (Electromagnetic Waves)
ویرایش : 2
عنوان ترجمه شده به فارسی : حسگرهای محدوده و تصویربرداری (امواج الکترومغناطیسی)
سری :
نویسندگان : Graham Brooker
ناشر : Scitech Publishing
سال نشر : 2022
تعداد صفحات : 1225
ISBN (شابک) : 1839531991 , 9781839531996
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 33 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Title
Copyright
Contents
About the author
Acknowledgements
Chapter 1 Introduction to sensing
1.1 Introduction
1.1.1 Active sensors
1.1.2 Passive sensors
1.2 A brief history of sensing
1.2.1 Sonar
1.2.2 Radar
1.2.3 Lidar
1.3 Passive infrared sensing
1.4 Sensor systems
1.5 Frequency band allocations for the electromagnetic spectrum
1.6 Frequency band allocations for the acoustic spectrum
References
Chapter 2 Signal processing and modulation
2.1 The nature of electronic signals
2.2 Noise
2.2.1 Thermal noise
2.2.2 Shot noise
2.2.3 1/f Noise
2.2.4 Avalanche noise
2.3 Generating analogue signals
2.3.1 Generating digital signals
2.4 Signals and noise in the frequency domain
2.4.1 The Fourier series
2.5 Analogue signal processing
2.5.1 Amplifiers
2.5.2 Practical considerations
2.6 Analogue filters
2.6.1 Low-pass filter
2.6.2 High-pass filters
2.6.3 Bandpass filters
2.6.4 Notch and band-reject filters
2.6.5 Active filter implementation
2.6.6 Other analogue circuits
2.7 Digital signal processing
2.7.1 Signal aliasing
2.7.2 Digital filters
2.8 Analogue modulation and demodulation
2.8.1 Amplitude modulation
2.9 Frequency modulation
2.10 Linear frequency modulation
2.11 Pulse-coded modulation techniques
2.11.1 Pulse amplitude modulation
2.11.2 Binary frequency shift keying
2.11.3 Phase-shift keying
2.11.4 Split phase codes
2.11.5 Stepped frequency modulation
2.12 Convolution
2.12.1 Linear time-invariant systems
2.12.2 The convolution sum
2.12.3 Worked example: pulsed radar echo amplitude
References
Chapter 3 IR radiometers and image intensifiers
3.1 Introduction
3.2 Thermal emission
3.2.1 Blackbody radiation
3.2.2 The Planck function
3.2.3 Properties of the Planck function
3.2.4 Confirmation of Stefan__amp__#8211;Boltzmann and Rayleigh__amp__#8211;Jean laws
3.3 Emissivity and reflectivity
3.3.1 Worked example: blackbody radiation from human body
3.4 Detecting thermal radiation
3.4.1 External photoeffect
3.4.2 Internal photoeffect
3.4.3 Heating
3.5 Performance criteria for detectors
3.5.1 Responsivity
3.5.2 Noise-equivalent power
3.5.3 Detectivity and specific detectivity
3.6 Noise processes and effects
3.7 Applications
3.7.1 Passive ultraviolet sensor (external photoeffect)
3.7.2 Radiation thermometer (internal photoeffect: thermopile)
3.7.3 Passive infrared sensor (internal photoeffect: pyroelectric)
3.7.4 Crookes radiometer
3.8 Introduction to thermal imaging systems
3.8.1 Scattering and absorption
3.8.2 Scanning mechanisms and arrays
3.8.3 Micro-bolometer arrays
3.8.4 Key optical parameters
3.9 Performance measures for infrared imagers
3.9.1 Detector field of view
3.9.2 Spatial frequency
3.9.3 Signal-to-noise ratio for a point target
3.9.4 Worked example: IRST system snr
3.9.5 Signal-to-noise ratio for a target in ground clutter
3.9.6 Noise-equivalent temperature difference
3.9.7 Example
3.9.8 The minimum resolvable temperature difference
3.10 Target detection and recognition
3.10.1 Example of FLIR detection
3.11 Thermal imaging applications
3.12 Image intensifiers
3.12.1 First-generation tubes
3.12.2 Second-generation tubes
3.12.3 Third-generation tubes
3.12.4 Spectral characteristics of the scene
3.12.5 Time gating microchannel plates
References
Chapter 4 Millimetre-wave radiometers
4.1 Antenna power temperature correspondence
4.1.1 Example of power received from a blackbody
4.2 Brightness temperature
4.3 Apparent temperature
4.4 Atmospheric effects
4.4.1 Attenuation
4.4.2 Downwelling radiation
4.4.3 Upwelling radiation
4.5 Terrain brightness
4.6 Worked example: space-based radiometer
4.6.1 Temperature contrast
4.7 Antenna considerations
4.7.1 Beamwidth
4.7.2 Efficiency
4.7.3 Fill ratio
4.8 Receiver considerations
4.8.1 Mixer implementations for microwave receivers
4.8.2 Noise figure
4.9 The system noise temperature
4.10 Radiometer temperature sensitivity
4.11 Radiometer implementation
4.11.1 Total power radiometer
4.11.2 Dicke radiometer
4.11.3 Performance comparison between radiometer types
4.12 Intermediate frequency and video gain requirements
4.12.1 Direct detection radiometers
4.13 Worked example: anti-tank sub-munition sensor design
4.13.1 Radiometer implementation
4.13.2 Receiver noise temperature
4.13.3 Minimum detectable temperature difference
4.14 Radiometric imaging
4.14.1 Image processing
4.15 Applications
4.15.1 Airborne scanned millimetre-wave radiometer
4.15.2 Scanning multi-channel microwave radiometer
4.15.3 Ground-based millimetre-wave radiometers
4.15.4 Radio astronomy
References
Chapter 5 Active ranging sensors
5.1 Overview
5.2 Triangulation
5.3 Pulsed time-of-flight operation
5.3.1 Sensor requirements
5.3.2 Speed of propagation
5.3.3 The antenna
5.3.4 The transmitter
5.3.5 The receiver
5.4 Using pulsed time of flight
5.4.1 Timing discriminators
5.4.2 Pulse integration
5.4.3 Time transformation
5.5 Other methods of measuring range
5.5.1 Ranging using an unmodulated carrier
5.5.2 Ranging using a modulated carrier
5.5.3 Tellurometer example
5.6 The radar range equation
5.6.1 Derivation
5.6.2 The dB form
5.6.3 Worked example: radar detection calculation
5.6.4 Receiver noise
5.6.5 Determining the required signal level
5.6.6 Pulse integration and the probability of detection
5.7 The acoustic range equation
5.7.1 Example of using the acoustic range equation
5.8 TOF measurement considerations
5.9 Range measurement radar for a cruise missile
References
Chapter 6 Active imaging sensors
6.1 Imaging techniques
6.2 Range-gate limited 2D image construction
6.3 Beamwidth-limited 3D image construction
6.3.1 Push-broom scanning
6.3.2 Mechanical scanning
6.4 The lidar range equation
6.5 Lidar system performance
6.5.1 Direct detection
6.5.2 Heterodyne detection
6.5.3 Signal-to-noise ratio and detection probability
6.5.4 Worked example: lidar reflection from the moon
6.6 Digital terrain models
6.6.1 Surface models
6.6.2 Digital landscapes
6.6.3 Thematic visualisation
6.7 Airborne lidar hydrography
6.7.1 Laser airborne depth sounder
6.7.2 Photoacoustic airborne sonar system
6.8 3D imaging
6.8.1 Scanned radar systems
6.8.2 MIMO systems
6.8.3 Focused beam radar imaging
6.8.4 Line-scan lidar imaging
6.8.5 Lidar for autonomous vehicles
6.8.6 Unconventional scanning mechanisms
6.8.7 Jigsaw __amp__#8211; foliage-penetrating lidar
6.9 Acoustic imaging
6.9.1 Scanning acoustic microscopes
6.10 Worked example: lidar locust tracker
6.10.1 Requirement
6.10.2 Specifications
6.10.3 System hardware
6.10.4 Determining the required aircraft speed
6.10.5 Laser power density on the ground
6.10.6 The power density of the reflected signals back at the laser
6.10.7 The effect of the sun
6.10.8 The receiver
6.10.9 Conclusions
References
Chapter 7 Signal propagation
7.1 The sensing environment
7.2 Attenuation of electromagnetic waves
7.2.1 Clear weather attenuation
7.2.2 Effect of atmospheric pressure (air density)
7.2.3 Effect of rain
7.2.4 Effect of fog and clouds
7.2.5 Overall attenuation
7.2.6 Attenuation through dust and smoke
7.2.7 Effect of atmosphere composition
7.2.8 Electromagnetic propagation through solid materials
7.3 Refraction of electromagnetic waves
7.4 Acoustics and vibration
7.4.1 Characteristic impedance (Z) and sound pressure
7.4.2 Sound intensity (I)
7.4.3 Sound propagation in gases
7.4.4 Sound propagation in water
7.4.5 Sound propagation in solids
7.4.6 Attenuation of sound in air
7.5 Attenuation of sound in water
7.6 Reflection and refraction of sound
7.6.1 Waves normal to the interface
7.6.2 Waves at an angle to the interface
7.6.3 Propagation paths
7.7 Multipath effects
7.7.1 Mechanism
7.7.2 Multipath lobing
7.7.3 Multipath fading
7.7.4 Multipath tracking
7.7.5 Multipath experiment with ultrasound
7.7.6 Multipath effects on imaging
References
Chapter 8 Target and clutter characteristics
8.1 Introduction
8.2 Definition of target cross-section
8.2.1 Cross-section and the equivalent sphere
8.2.2 Cross-section of real targets
8.3 Radar cross-sections of man made objects
8.3.1 Simple shapes
8.3.2 Radar cross-section of complex targets
8.4 Effect of target material on RCS
8.5 RCS of living creatures
8.5.1 Human beings
8.5.2 Birds
8.5.3 Insects
8.6 Fluctuations in radar cross-section
8.6.1 Temporal fluctuations
8.6.2 Spatial distribution of cross-section
8.7 Radar stealth
8.7.1 Minimising detectability
8.7.2 Anti-stealth technology
8.8 Target cross-section in the infrared
8.9 Acoustic target cross-section
8.9.1 Target composition
8.9.2 Target properties
8.9.3 Particulate targets
8.9.4 Underwater targets
8.10 Clutter cross-section
8.10.1 Ground clutter
8.10.2 Sea clutter
8.11 Surface clutter backscatter
8.12 Calculating volume backscatter
8.12.1 Rain
8.12.2 Dust and mist
8.12.3 Chaff
8.13 Underwater Clutter
8.13.1 Backscatter
8.13.2 Volume reverberation
8.14 Worked example: orepass radar development
8.14.1 Requirement
8.14.2 Selection of a sensor
8.14.3 Range resolution
8.14.4 Target characteristics
8.14.5 Clutter characteristics
8.14.6 Target signal-to-clutter ratio (SCR)
8.14.7 Antenna size and radar frequency
8.14.8 Radar configuration
8.14.9 Component selection
8.14.10 Signal-to-noise ratio
8.14.11 Measurement update rate
8.14.12 Monitoring rock falling down the pass
8.14.13 Prototype build and test
References
Chapter 9 Detection of signals in noise
9.1 Introduction
9.2 Radar noise
9.2.1 Noise probability density functions
9.3 Infrared detection and lidar noise
9.3.1 Thermal noise
9.3.2 Shot noise
9.3.3 Avalanche noise
9.3.4 1/f noise
9.3.5 Total noise contribution
9.4 Sonar noise
9.4.1 Thermal noise
9.4.2 Noise from the sea
9.5 Effects of signal-to-noise ratio
9.5.1 Probability of false alarm
9.5.2 Probability of detection
9.5.3 Detector loss relative to an ideal system
9.6 The matched filter
9.7 Coherent detection
9.8 Integration of pulse trains
9.9 Detection of fluctuating signals
9.10 Detecting targets in clutter
9.11 Constant false alarm rate (CFAR) processors
9.12 Target detection analysis
9.12.1 Worked example: target detection with an air surveillance radar
9.12.2 Range analysis software packages
9.12.3 Detection range in rain
9.13 Noise jamming
9.13.1 Noise jamming example
References
Chapter 10 Doppler measurement
10.1 The Doppler shift
10.1.1 Doppler shift derivation
10.2 Doppler geometry
10.2.1 Targets moving at low velocities (v__amp__#8810;c)
10.2.2 Targets moving at high speed (v __amp__lt; c)
10.3 Doppler shift extraction
10.3.1 Direction discrimination
10.4 Pulsed Doppler
10.5 Doppler sensors
10.5.1 Continuous wave Doppler ultrasound
10.5.2 Continuous wave Doppler radar
10.5.3 Pulsed Doppler ultrasound
10.5.4 Pulsed Doppler radar
10.6 Doppler target generators
10.6.1 Spinning reflectors
10.6.2 Electronic targets
10.6.3 Piezoelectric target
10.7 Case study: estimating the speed of radio-controlled aircraft
10.7.1 Background
10.7.2 Measured data
References
Chapter 11 High-range-resolution techniques
11.1 Classical modulation techniques
11.2 Amplitude modulation
11.2.1 Range resolution
11.3 Frequency and phase modulation
11.3.1 Matched filter
11.4 Phase-coded pulse compression
11.4.1 Barker codes
11.4.2 Random codes
11.4.3 Correlation
11.5 SAW-based pulse compression
11.6 Step frequency
11.7 Frequency-modulated continuous-wave radar
11.7.1 Operational principles
11.7.2 Matched filtering
11.7.3 The ambiguity function
11.7.4 Effect of a non-linear chirp
11.7.5 Chirp linearisation
11.7.6 Extraction of range information and range gating
11.7.7 Problems with FMCW
11.8 Stretch
11.9 Interrupted FMCW
11.9.1 Disadvantages
11.9.2 Optimising for a long-range imaging application
11.9.3 Implementation
11.10 Side lobes and weighting for linear FM systems
11.11 Transmitter leakage and phase noise in FMCW radars
11.12 High-resolution radar systems
11.12.1 Industry
11.12.2 Automotive radar
11.12.3 Research radars
11.13 Worked example: Brimstone antitank missile
11.13.1 System specifications
11.13.2 Seeker specifications (known)
11.13.3 Operational procedure __amp__#8211; Lock-on after launch
11.13.4 System performance (speculated)
11.13.5 Dual-look target confirmation
11.13.6 Transition to track
11.13.7 Tracking and guidance
11.13.8 Dual-mode Brimstone
References
Chapter 12 High angular-resolution techniques
12.1 Introduction
12.2 Phased arrays
12.2.1 Advantages of using phased arrays
12.2.2 Using metamaterials to improve antenna performance
12.2.3 Array synthesis
12.2.4 Two-point array
12.2.5 Four-point array
12.2.6 The general case
12.3 The radiation pattern
12.3.1 Linear array
12.3.2 Radiation pattern: 2D rectangular array
12.4 Beam steering
12.4.1 Active and passive arrays
12.4.2 Corrections to improve range resolution
12.5 Array characteristics
12.5.1 Antenna gain and beamwidth
12.5.2 Matching and mutual coupling
12.5.3 Thinned arrays
12.5.4 Conformal arrays
12.6 Applications
12.6.1 Acoustic array
12.6.2 MMIC phased arrays
12.6.3 Early warning phased array radar
12.7 Side-scan sonar
12.7.1 Operational principles
12.7.2 Hardware
12.7.3 Operation and image interpretation
12.7.4 Signal processing
12.8 Worked example: performance of the ICT-5202 transducer
12.9 Doppler beam-sharpening
12.9.1 Overview
12.9.2 DBS analysis
12.9.3 Image formation
12.9.4 Worked example: DBS sonar
12.10 Operational principles of synthetic aperture
12.11 Range and cross-range resolution
12.11.1 Unfocused SAR
12.11.2 Focused SAR
12.11.3 Resolution comparison
12.12 Worked example: synthetic-aperture sonar
12.13 Radar-image-quality issues
12.13.1 Perspective of a radar image
12.13.2 Image distortion
12.13.3 Speckle
12.14 SAR on unmanned aerial vehicles
12.14.1 Tactical Endurance Synthetic-Aperture Radar
12.14.2 MiniSAR
12.14.3 Other UAV-based SAR systems
12.15 Airborne SAR capability
12.16 Space-based SAR
12.16.1 Interferometric SAR
12.17 Magellan Mission to Venus
References
Chapter 13 Range and angle estimation and tracking
13.1 Introduction
13.2 Range estimation and tracking
13.2.1 Range gating
13.3 Principles of a split-gate tracker
13.3.1 Range transfer function
13.3.2 Noise on split-gate trackers
13.4 Range tracking loop implementation
13.4.1 The __amp__#945;__amp__#8211;__amp__#946; filter
13.4.2 The __amp__#945;__amp__#8211;__amp__#946;__amp__#8211;__amp__#947; filter
13.4.3 The Kalman filter
13.4.4 Other fixed gain tracking filters
13.5 Ultrasonic range tracker example
13.6 Tracking noise after filtering
13.7 Tracking lag for an accelerating target
13.8 Worked example: range tracker bandwidth optimisation
13.9 Range tracking systems
13.9.1 Lidar speed trap
13.10 Seduction jamming
13.11 Angle measurement
13.11.1 Amplitude thresholding
13.11.2 Proximity detector example
13.12 Angle tracking principles
13.12.1 Scanning across the target
13.12.2 Null steering
13.13 Lobe switching (sequential lobing)
13.13.1 Main disadvantages of lobe switching
13.14 Conical scan
13.14.1 The squint angle optimisation process
13.14.2 Measuring the conscan antenna transfer function
13.14.3 Application
13.14.4 Main disadvantages
13.14.5 Other considerations
13.15 Infrared target trackers
13.16 Amplitude comparison monopulse
13.16.1 Antenna patterns
13.16.2 Generation of error signals for a microwave radar
13.16.3 Ultrasound sonar beacon tracker example
13.16.4 Classical monopulse radar
13.16.5 Monopulse tracking using phased array
13.17 Comparison between conscan and monopulse
13.18 Angle tracking loops
13.18.1 Motor control
13.18.2 Tracking error
13.19 Angle estimation and tracking applications
13.19.1 Instrument landing system
13.20 Worked example: combined acoustic and infrared tracker
13.20.1 Operational principles of prototype
13.20.2 Theoretical performance
13.20.3 Tracker implementation
13.20.4 Construction
13.20.5 Control algorithms
13.21 Angle track jamming
13.22 Triangulation and trilateration
13.22.1 Loran-C
References
Chapter 14 Tracking moving targets
14.1 Track while scan
14.2 The coherent pulsed tracking radar
14.2.1 Single-channel detection
14.2.2 I/Q detection
14.2.3 Moving target indicator
14.3 Limitations to MTI performance
14.4 Range-gated pulsed Doppler tracking
14.5 Coordinate frames
14.5.1 Measurement frame
14.5.2 Tracking and estimation frame
14.6 Antenna mounts and servo systems
14.7 On-axis tracking
14.7.1 Crossing targets and apparent acceleration
14.8 Millimetre-wave tracking radar
14.9 Tracking in Cartesian space
14.10 Combining radar and optronic tracking
14.11 Worked example: fire control radar
14.11.1 Requirements
14.11.2 Selection of polarisation
14.11.3 Positioner specifications
14.11.4 Radar horizon
14.11.5 Selection of frequency
14.11.6 Adverse weather effects
14.11.7 Required single-pulse signal-to-noise ratio
14.11.8 Tracking gate size
14.11.9 Signal-to-clutter
14.11.10 Moving target indicator
14.11.11 The pulse repetition frequency
14.11.12 Search requirement
14.11.13 Integration gain
14.11.14 Matched filter
14.11.15 Transmitter power
14.11.16 System configuration
14.11.17 Free-space detection range
14.11.18 Effects of multipath on aircraft detection
14.11.19 Detection threshold and CFAR
14.11.20 Transition to track
14.11.21 Target tracking
References
Chapter 15 RFID tags and transponders
15.1 Principle of operation
15.2 History
15.3 Secondary surveillance radar
15.3.1 Interrogation equipment
15.3.2 Transponder equipment
15.3.3 Operation
15.3.4 SSR issues
15.4 Automatic Dependent Surveillance__amp__#8211;Broadcast
15.4.1 Data format
15.5 AIS transponders
15.6 Radio-frequency identification (RFID) systems
15.6.1 Electronic article surveillance
15.6.2 Multibit EAS tags
15.6.3 Magnetic coupled RFID transponder systems
15.6.4 Electromagnetic coupled RFID transponder systems
15.7 Other applications
15.7.1 House arrest tag
15.7.2 Animal tracking
15.7.3 Near-field communications and proximity cards
15.8 Social issues of RFID
15.9 Technical challenges
15.10 Harmonic radar
15.11 Passive reflected power modulation
15.12 Battlefield combat ID system
15.12.1 Combat identification: the future
15.13 Indoor localisation
References
Chapter 16 Tomography and 3D imaging
16.1 Principle of operation
16.2 CT imaging
16.2.1 Image reconstruction
16.2.2 What is displayed in CT images
16.2.3 Two-dimensional displays
16.2.4 Three-dimensional displays
16.3 Magnetic resonance imaging
16.3.1 Nuclear magnetic resonance
16.3.2 Imaging process
16.3.3 Imaging resolution
16.4 Magnetic resonance images
16.4.1 Contrast enhancement
16.4.2 DICOM files
16.5 Functional MRI investigations of brain function
16.6 Positron emission tomography
16.6.1 Examples of the use of PET scans
16.7 3D ultrasound imaging
16.7.1 2D medical ultrasound
16.8 3D extension
16.8.1 Ultrasonic computed tomography
16.9 Pocket ultrasound
16.10 Other ultrasound imaging modalities
16.10.1 Tissue harmonic imaging
16.10.2 Colour flow mapping
16.10.3 Shear wave elastography
16.11 Sonar imaging in 3D
16.12 Ground-penetrating radar
16.12.1 3D imaging using GPR
16.13 Worked example: detecting a ruby nodule in a rock matrix
References
Index