توضیحاتی در مورد کتاب Shepherding UxVs for Human-Swarm Teaming: An Artificial Intelligence Approach to Unmanned X Vehicles (Unmanned System Technologies)
نام کتاب : Shepherding UxVs for Human-Swarm Teaming: An Artificial Intelligence Approach to Unmanned X Vehicles (Unmanned System Technologies)
ویرایش : 1st ed. 2021
عنوان ترجمه شده به فارسی : Shepherding UxVs for Human-Swarm Teaming: رویکرد هوش مصنوعی به وسایل نقلیه بدون سرنشین X (فناوری های سیستم بدون سرنشین)
سری :
نویسندگان : Hussein A. Abbass (editor), Robert A. Hunjet (editor)
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 339
ISBN (شابک) : 3030608972 , 9783030608972
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب از چوپانی طبیعی الهام گرفته است، به موجب آن یک کشاورز از سگهای گله برای گلهداری گوسفندان استفاده میکند تا رویکردی مقیاسپذیر و ذاتاً انسان دوستانه برای کنترل ازدحام الهام بخشد. این کتاب در مورد رویکردهای هوش مصنوعی پیشرفته (AI) مورد نیاز برای طراحی عوامل چوپان رباتیک هوشمند که قادر به کنترل ازدحام بیولوژیکی یا گروههای روباتیک وسایل نقلیه بدون سرنشین هستند، بحث میکند. این عوامل چوپانی هوشمند با تکنیک های قابل استفاده برای کنترل وسایل نقلیه بدون سرنشین X (UxVs) از جمله هوا (وسایل نقلیه هوایی بدون سرنشین یا پهپاد)، زمینی (وسایل نقلیه زمینی بدون سرنشین یا UGV)، زیر آب (وسایل نقلیه زیردریایی بدون سرنشین یا UUV) و در سطح آب (وسایل نقلیه سطحی بدون سرنشین یا USV). این کتاب پیشنهاد میکند که چگونه «شپردهای» هوشمند میتوانند طراحی و مورد استفاده قرار گیرند تا دستهای از UxVها را برای دستیابی به یک هدف هدایت کنند و در عین حال مشکلات پهنای باند ارتباطی معمولی را که در کنترل سیستمهای چند عاملی ایجاد میشوند، بهبود بخشند. این کتاب طیف وسیعی از موضوعات را شامل میشود، از طراحی مدلهای یادگیری تقویتی عمیق برای نگهداری ازدحام، شفافیت در هدایت ازدحام، و یادگیری هدایتشده توسط هستیشناسی، تا طراحی روشهای هدایت ازدحام هوشمند برای چوپانی با UGV و پهپاد. این کتاب با بررسی تجزیه و تحلیل بلادرنگ دادههای انسان در طول تعامل انسان و ازدحام، مفهوم اعتماد برای تیمسازی ازدحام انسان، و طراحی سیستمهای تشخیص فعالیت برای شبانگری، بحث را به گروهبندی ازدحام انسان بسط میدهد.
- نگاهی جامع به تیمسازی ازدحام انسان ارائه میکند؛
- به تکنیکهای هوش مصنوعی برای هدایت ازدحام میپردازد؛
- تکنیکهای هوش مصنوعی را ارائه میکند. برای تجزیه و تحلیل عملکرد انسان در زمان واقعی.
فهرست مطالب :
Foreword
Preface
Acknowledgements
Contents
Contributors
Generalised Shepherding Notations
1 Smart Shepherding: Towards Transparent Artificial Intelligence Enabled Human-Swarm Teams
1.1 From Swarm Intelligence to Shepherding
1.2 Shepherding
1.3 The Practical Significance of Shepherding
1.4 Reactive vs Cognitive Shepherds and Sheepdogs
1.5 Swarm Ontology for Transparent Artificial Shepherding
1.6 Artificial Intelligence Architecture for Shepherds and Sheepdogs
1.6.1 Shepherds and Sheepdogs Autonomy Architecture
1.6.2 Shepherds and Sheepdogs Contextual Awareness Architecture
1.6.3 Smart Shepherds and Sheepdogs Overall Architecture
1.7 Conclusion
References
Part I Shepherding Simulation
2 Shepherding Autonomous Goal-Focused Swarms in Unknown Environments Using Hilbert Space-Filling Paths
2.1 Introduction
2.2 Background Research
2.3 Methodology
2.3.1 Simulation Setup
2.3.2 Force Modulation
2.3.3 Path Planning
2.3.4 Hilbert Space-Filling Curves
2.4 Results and Discussion
2.4.1 Force Weights
2.4.2 Number of Goals
2.5 Conclusion
References
3 Simulating Single and Multiple Sheepdogs Guidance of a Sheep Swarm
3.1 Introduction
3.2 Experimental and Computational Details
3.2.1 Problem Formulation
3.2.2 Sheep Agent Model
3.2.3 Shepherd Agent Model
3.2.4 Swarm Guidance Algorithm Design
3.2.5 Experimental Design
3.3 Simulation Results
3.3.1 Herding with a Single Shepherd
3.3.2 Herding with a Multi-Shepherd Swarm
3.3.3 Herding with a Multi-Shepherd Swarm Plus Formation
3.3.4 Analysis of the Shepherding Task as a Function of Guidance Scheme
3.4 Conclusions
References
4 The Influence of Stall Distance on Effective Shepherdingof a Swarm
4.1 Introduction
4.2 Background
4.2.1 Driving Interactions
4.2.2 Collecting Interactions
4.3 Methodology
4.4 Experimental Design
4.4.1 Genetic Algorithm Exploration of Stall Distance
4.4.2 Systematic Analysis of Stall Distance
4.5 Results
4.5.1 Results of Genetic Algorithm Exploration of Stall Distance
4.5.2 Systematic Analysis of Stall Distance
4.5.2.1 Success Rates for Herding
4.5.2.2 Herding Time Steps and Distances
4.6 Conclusion
References
Part II Learning and Optimisation for Shepherding
5 Mission Planning for Shepherding a Swarm of Uninhabited Aerial Vehicles
5.1 Introduction
5.2 Overview of Mission Planning for Shepherding UAV Swarm
5.3 Task Planning
5.3.1 Task Decomposition
5.3.2 Task Assignment
5.3.3 Algorithms for Task Planning
5.4 Motion Planning
5.4.1 Path Planning
5.4.2 Trajectory Planning
5.4.3 Algorithms for Motion Planning
5.5 Mission Planning
5.6 Conclusion and Discussion
References
6 Towards Ontology-Guided Learning for Shepherding
6.1 Introduction
6.2 Learning Shepherding Systems
6.3 Prior Knowledge in Learning Systems
6.4 Hybrid Learning
6.4.1 Guided Learning Systems
6.5 Ontology Guided Shepherding
6.6 Future Work
6.7 Conclusion
References
7 Activity Recognition for Shepherding
7.1 Introduction
7.1.1 Problem Frame
7.1.2 Motivation
7.2 Activity Recognition
7.2.1 Elements of Activity Recognition
7.2.1.1 Agent
7.2.1.2 Agent Types
7.2.1.3 Action and Activity
7.2.1.4 Defining Activity Recognition
7.2.2 Problem Components
7.2.2.1 Agent Design
7.2.3 Approaches
7.2.3.1 Data-Driven Approaches
7.2.3.2 Knowledge-Driven Approaches
7.2.3.3 Hybrid Approaches
7.3 Shepherding
7.3.1 Open Challenges
7.3.1.1 Activity Verification
7.3.1.2 Adversarial Activity Recognition
7.3.1.3 Context-Aware Activity Recognition
7.3.1.4 Cross-Domain (Multi-Modality) Activity Recognition
7.3.1.5 Dynamic Activity Recognition
7.3.1.6 Inter- and Intra-Activity Delay and Task Selection
7.3.2 Solving the Activity Recognition for Shepherding Problem
7.3.2.1 Shepherding Taxonomy
7.3.2.2 Framework
7.3.2.3 Central Challenge
7.4 Formulating Activity Recognition for Shepherding
7.4.1 Describing Shepherding Behaviours
7.4.2 Classifying Behaviour Through Spatial Data
7.4.2.1 Methodology
7.4.2.2 Analysis
7.5 Conclusion
References
8 Stable Belief Estimation in Shepherd-Assisted Swarm Collective Decision Making
8.1 Introduction
8.2 Related Work
8.3 Problem Definition and Assumptions
8.4 Shepherd-Assisted Algorithm
8.4.1 Swarm Members' Behaviour
8.4.2 Shepherd's Behaviour
8.5 Experimental Results
8.6 Discussion
8.7 Conclusion and Future Directions
References
Part III Sky Shepherding
9 Sky Shepherds: A Tale of a UAV and Sheep
9.1 Introduction
9.2 Shepherding Models
9.3 Flock Dynamics
9.4 Autonomous Sky Shepherd Methodology
9.5 Concluding Comments
References
10 Apprenticeship Bootstrapping Reinforcement Learning for Sky Shepherding of a Ground Swarm in Gazebo
10.1 Introduction
10.2 Aerial/Sky Shepherding of Ground Swarm
10.2.1 Unmanned Air–Ground Vehicles Coordination
10.2.2 A Brief Review of Coordination in Unmanned Air–Ground Vehicles
10.2.3 Autonomous Aerial/Sky Shepherding in Air–Ground Coordination
10.3 The Aerial/Sky Shepherding Task
10.3.1 Description of the Aerial/Sky Shepherding Task
10.3.2 The Aerial/Sky Shepherding Task as a Multi-Agent System
10.4 Learning Approaches
10.4.1 Reinforcement Learning
10.4.1.1 Markov Decision Process
10.4.1.2 Q-Learning
10.4.1.3 Deep Q-Network
10.4.1.4 Multi-Agent Reinforcement Learning
10.4.2 Apprenticeship Learning
10.4.2.1 Supervised Learning
10.4.2.2 Inverse Reinforcement Learning
10.4.2.3 Hybrid Methods
10.4.2.4 Multi-Agent Apprenticeship Learning/Imitation Learning
10.4.3 Apprenticeship Bootstrapping
10.4.3.1 Clarifying Tasks
10.4.3.2 Learning Tasks
10.4.3.3 Apprenticeship Bootstrapping Approach
10.5 Initial Results
10.5.1 Proposed Methodology
10.5.1.1 Evaluation Metrics
10.5.2 Experimental Design
10.5.2.1 Demonstration Interface
10.5.2.2 Actions and States Space
10.5.2.3 Experimental Setups
10.5.3 Results and Discussion
10.5.3.1 Training
10.5.3.2 Testing
10.6 Conclusions and Open Issues
References
11 Logical Shepherd Assisting Air Traffic Controllers for Swarm UAV Traffic Control Systems
11.1 Introduction
11.2 Background
11.2.1 Advantages of Shepherding in Air Traffic Control
11.2.2 Challenges for Shepherding in Air Traffic Control
11.3 Asynchronous Shepherding
11.4 The Digital Twin
11.4.1 ATOMS
11.4.2 UTC Interface
11.4.3 Applying the Asynchronous Shepherding Rules
11.4.4 Asynchronous Shepherding Algorithm
11.4.5 Issues for Future Research
11.5 Conclusion
References
Part IV Human-Shepherding Integration
12 Transparent Shepherding: A Rule-Based Learning Shepherd for Human Swarm Teaming
12.1 Introduction
12.2 Challenges for Efficient Human Swarm Teaming
12.3 Fundamentals of Rule-Based Artificial Intelligence
12.3.1 Structure
12.3.2 Representation of Knowledge: Rules
12.3.3 The Inference Mechanism
12.4 Learning Classifier Systems
12.4.1 Learning Classifier System Components
12.5 Learning Classifier Systems for Human Swarm Teaming
12.5.1 Transparency: Rules as Justifiers
12.5.2 Flexibility
12.5.3 Multi-Agent Coordination
12.6 Learning Classifier System Model for Shepherding
12.6.1 Sheep-Dog Herding Problem
12.6.2 XCS Classifier Representation
12.6.3 Experimental Setup
12.6.4 Results
12.7 Summary and Future Work
References
13 Human Performance Operating Picture for Shepherding a Swarm of Autonomous Vehicles
13.1 Introduction
13.2 Human Performance
13.3 Performance Measures in Human-Swarm Teams
13.3.1 Task- and System-Related Measures
13.3.2 Human-Related Measures
13.3.3 Workload
13.3.4 Situation Awareness
13.3.5 Trust
13.4 Human Performance Operating Picture for Swarm Shepherding
13.4.1 Design Considerations
13.4.2 Elements of H-FOP Design
13.4.3 Shepherding a Group of Robots for Effective Human-Swarm Teaming
13.5 Conclusions
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This book draws inspiration from natural shepherding, whereby a farmer utilizes sheepdogs to herd sheep, to inspire a scalable and inherently human friendly approach to swarm control. The book discusses advanced artificial intelligence (AI) approaches needed to design smart robotic shepherding agents capable of controlling biological swarms or robotic swarms of unmanned vehicles. These smart shepherding agents are described with the techniques applicable to the control of Unmanned X Vehicles (UxVs) including air (unmanned aerial vehicles or UAVs), ground (unmanned ground vehicles or UGVs), underwater (unmanned underwater vehicles or UUVs), and on the surface of water (unmanned surface vehicles or USVs). This book proposes how smart ‘shepherds’ could be designed and used to guide a swarm of UxVs to achieve a goal while ameliorating typical communication bandwidth issues that arise in the control of multi agent systems. The book covers a wide range of topics ranging from the design of deep reinforcement learning models for shepherding a swarm, transparency in swarm guidance, and ontology-guided learning, to the design of smart swarm guidance methods for shepherding with UGVs and UAVs. The book extends the discussion to human-swarm teaming by looking into the real-time analysis of human data during human-swarm interaction, the concept of trust for human-swarm teaming, and the design of activity recognition systems for shepherding.
- Presents a comprehensive look at human-swarm teaming;
- Tackles artificial intelligence techniques for swarm guidance;
- Provides artificial intelligence techniques for real-time human performance analysis.