توضیحاتی در مورد کتاب Simulations in Medicine: Pre-clinical and Clinical Applications
نام کتاب : Simulations in Medicine: Pre-clinical and Clinical Applications
عنوان ترجمه شده به فارسی : شبیه سازی در پزشکی: کاربردهای پیش بالینی و بالینی
سری :
نویسندگان : Irena Roterman-Konieczna (editor)
ناشر : De Gruyter
سال نشر : 2015
تعداد صفحات : 350
ISBN (شابک) : 9783110406344 , 9783110406269
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 17 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents\nPreface\nList of authors\nPart I: Molecular level\n 1. Selected aspects of biological network analysis\n 1.1 Introduction\n 1.2 Selected biological databases\n 1.2.1 Case study: Gene Expression Omnibus\n 1.2.2 RegulonDB\n 1.3 Types of biological networks\n 1.3.1 Relations between molecules and types of networks\n 1.3.2 Biochemical pathways\n 1.4 Network development models\n 1.4.1 Selected tools for assembling networks on the basis of gene expression data\n 1.4.2 Selected tools for reconstruction of networks via literature mining\n 1.5 Network analysis\n 1.5.1 Selected tools\n 1.5.2 Cytoscape analysis examples\n 1.6 Summary\nPart II: Cellular level\n 2. Negative feedback inhibition – Fundamental biological regulation in cells and organisms\n 2.1 Negative feedback-based systems simulations\n 2.1.1 Introduction\n 2.1.2 Glossary of Terms\n 2.1.3 Software model\n 2.1.4 Application manual\n 2.1.5 OS model example\n 2.1.6 Simulation algorithm\n 3. Information – A tool to interpret the biological phenomena\nPart III: Organ level\n 4. The virtual heart\n 5. Modeling figure/ground separation with spiking neurons\n 5.1 Introduction\n 5.2 Figure/ground separation\n 5.3 Spiking neural networks\n 5.4 Lateral connections via gap junctions\n 5.5 Simulation of a sheet of laterally connected neurons\n 5.6 Basis of our model\n 5.7 Conclusion\nPart IV: Whole body level\n 6. Simulation-based analysis of musculoskeletal system properties\n 6.1 Introduction\n 6.2 Components of a motion simulation model\n 6.2.1 Simulating the skeleton\n 6.2.2 Bone model simulations\n 6.2.3 Muscle models\n 6.2.4 Velocity-dependent simulations of the muscle model\n 6.3 Summary\n 6.4 Simulation software available for download\nPart V: Diagnostics procedure\n 7. The world of virtual patients\n 7.1 Introduction\n 7.2 What are virtual patients?\n 7.3 Types of virtual patient\n 7.4 The motivation behind virtual patients\n 7.5 Theoretical underpinnings of virtual patients\n 7.5.1 Experiential learning theory\n 7.5.2 Theory of clinical reasoning\n 7.6 The technology behind virtual patients\n 7.6.1 Virtual patient systems\n 7.6.2 Components of virtual patients\n 7.6.3 Standards\n 7.7 How to use virtual patients?\n 7.7.1 Preparation for or follow-up of face-to-face teaching\n 7.7.2 Integration into a face-to-face session\n 7.7.3 Assessment\n 7.7.4 Learning-by-teaching approach\n 7.8 The future of virtual patients\n 8. Interactive virtual patients in immersive clinical environments: The potential for learning\n 8.1 Introduction\n 8.2 What are virtual worlds?\n 8.3 Immersive Clinical Environments (Virtual Clinical Worlds)\n 8.4 Virtual patients\n 8.5 Interactive virtual patients in immersive clinical environments\n 8.6 Case study: Using immersive clinical environments for Inter-Professional Education at Charles R. Drew University of Medicine\n 8.6.1 Introduction to case study\n 8.6.2 The case study\n 8.6.3 Assessment\n 8.6.4 Summary and lessons learned\n 8.7 The potential for learning\n 8.7.1 Why choose immersive clinical environments?\n 8.7.2 Decide\n 8.7.3 Design\n 8.7.4 Develop\n 8.7.5 Deploy\n 8.8 Conclusion: “Learning by Doing ... Together”\n 9. Melanoma thickness prediction\n 9.1 Introduction\n 9.2 Motivation\n 9.3 Clinical definition and importance\n 9.4 Algorithm for the determination of melanoma thickness\n 9.5 Melanoma thickness simulations\n 9.6 Conclusions\nPart VI: Therapy\n 10. Simulating cancer chemotherapy\n 10.1 Simulating untreated cancer\n 10.2 Enhanced model of untreated cancer\n 10.3 Simulating chemotherapy\n 10.4 Simulation software available for the reader\n 11. Introduction to Reverse Engineering and Rapid Prototyping in medical applications\n 11.1 Introduction\n 11.2 Reverse Engineering\n 11.2.1 Phase one – Inputs of medical RE\n 11.2.2 Phase two – Data acquisition\n 11.2.3 Phase three – Data processing\n 11.2.4 Phase four – Biomedical applications\n 11.3 Software for medical RE\n 11.3.1 Mimics Innovation Suite\n 11.3.2 Simpleware ScanIP\n 11.3.3 3D-DOCTOR\n 11.3.4 Amira\n 11.3.5 Other software for 3D model reconstruction\n 11.3.6 RE and dimensional inspection\n 11.3.7 Freeform modeling\n 11.3.8 FEA simulation and CAD/CAM systems\n 11.4 Methods of Rapid Prototyping for medical applications – Additive Manufacturing\n 11.4.1 Liquid-based RP technology\n 11.4.2 Stereolithography (SLA)\n 11.4.3 Polymer printing and jetting\n 11.4.4 Digital Light Processing (DLP)\n 11.4.5 Solid sheet materials\n 11.4.6 Fused Deposition Modeling (FDM)\n 11.4.7 Selective Laser Sintering (SLS)\n 11.4.8 Selective Laser Melting (SLM)\n 11.4.9 Electron Beam Melting (EBM)\n 11.4.10 Tissue engineering\n 11.5 Case studies\n 11.5.1 One-stage pelvic tumor reconstruction\n 11.5.2 Orbital reconstruction following blowout fracture\n 11.6 Summary\n 12. Computer simulations in surgical education\n 12.1 Introduction\n 12.2 Overview of applications\n 12.2.1 Gray’s Anatomy Student Edition, Surgical Anatomy – Student Edition, digital editions of anatomy textbooks for the iOS (free) and Android (paid)\n 12.2.2 Essential Skeleton 4, Dental Patient Education Lite, 3D4Medical Images and Animations, free educational software by 3D4Medical.com, available for iOS, Android (Essential Skeleton 3 – earlier version; paid editions of Essential Anatomy 3 and iMuscle 2)\n 12.2.3 SpineDecide – An example of point of care patient education for healthcare professionals, available for iOS\n 12.2.4 iSurf BrainView – Virtual guide to the human brain, available for iOS\n 12.2.5 Monster Anatomy Lite – Knee – Orthopedic guide, available for iOS (Monster Minds Media)\n 12.2.6 AO Surgery Reference – Orthopedic guidebook for diagnosis and trauma treatment, available for iOS and Android\n 12.2.7 iOrtho+ – Educational aid for rehabilitationists, available for iOS and Android\n 12.2.8 DrawMD – Based on General Surgery and Thoracic Surgery by Visible Health Inc., available for iOS\n 12.2.9 MEDtube, available for iOS and Android\n 12.3 Specialized applications\n 12.3.1 Application description\n 12.4 Simulators\n 12.4.1 Selected examples of surgical simulators\n 12.5 Summary\nPart VII: Support of therapy\n 13. From telemedicine to modeling and proactive medicine\n 13.1 Introduction\n 13.2 ICT-driven transformation in healthcare\n 13.2.1 Overview of telemedicine\n 13.2.2 Traditional model of healthcare supported by telemedicine\n 13.2.3 Modeling as knowledge representation in medicine\n 13.2.4 Towards a personalized and proactive approach in medicine\n 13.2.5 Model of proactive healthcare\n 13.3 Computational methods for models development\n 13.3.1 Computational methods for imaging data\n 13.3.2 Computational methods for parametric data\n 13.4 TeleCARE – telemonitoring framework\n 13.4.1 Overview\n 13.4.2 Contribution to the model-based proactive medicine concept\n 13.4.3 Case study\n 13.5 TeleDICOM – system for remote interactive consultations\n 13.5.1 Overview\n 13.5.2 Contribution to the model-based proactive medicine concept\n 13.6 Conclusions\n 14. Serious games in medicine\n 14.1 Serious games for health – Video games and health issues\n 14.1.1 Introduction\n 14.1.2 Previous surveys\n 14.1.3 Evidence review\n 14.1.4 Conclusions\n 14.2 Serious game graphic design based on understanding of a new model of visual perception – computer graphics\n 14.2.1 Introduction\n 14.2.2 A new model of perception for visual communication\n 14.2.3 Visibility enhancement with the use of animation\n 14.2.4 Conclusion\n 14.3 Serious gaming in medicine\n 14.3.1 Therapeutic support for children\n 14.3.2 Therapeutic support for the elderly\nIndex