Smart Grids and Internet of Things: An Energy Perspective

دانلود کتاب Smart Grids and Internet of Things: An Energy Perspective

45000 تومان موجود

کتاب شبکه های هوشمند و اینترنت اشیا: چشم انداز انرژی نسخه زبان اصلی

دانلود کتاب شبکه های هوشمند و اینترنت اشیا: چشم انداز انرژی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 13


توضیحاتی در مورد کتاب Smart Grids and Internet of Things: An Energy Perspective

نام کتاب : Smart Grids and Internet of Things: An Energy Perspective
ویرایش : 1
عنوان ترجمه شده به فارسی : شبکه های هوشمند و اینترنت اشیا: چشم انداز انرژی
سری :
نویسندگان : , , , ,
ناشر : Wiley-Scrivener
سال نشر : 2023
تعداد صفحات : 482
ISBN (شابک) : 9781119812449 , 1119812445
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 20 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover\nTitle Page\nCopyright Page\nContents\nPreface\nChapter 1 Introduction to the Internet of Things: Opportunities, Perspectives and Challenges\n 1.1 Introduction\n 1.1.1 The IOT Data Sources\n 1.1.2 IOT Revolution\n 1.2 IOT Platform\n 1.3 IOT Layers and its Protocols\n 1.4 Architecture and Future Problems for IOT Protection\n 1.5 Conclusion\n References\nChapter 2 Role of Battery Management System in IoT Devices\n 2.1 Introduction\n 2.1.1 Types of Lithium Batteries\n 2.1.1.1 Lithium Battery (LR)\n 2.1.1.2 Button Type Lithium Battery (BLB)\n 2.1.1.3 Coin Type Lithium Battery (CLB)\n 2.1.1.4 Lithium-Ion Battery (LIB)\n 2.1.1.5 Lithium-Ion Polymer Battery (LIP)\n 2.1.1.6 Lithium Cobalt Battery (LCB)\n 2.1.1.7 Lithium Manganese Battery (LMB)\n 2.1.1.8 Lithium Phosphate Battery (LPB)\n 2.1.1.9 Lithium Titanate Battery (LTB)\n 2.1.2 Selection of the Battery\n 2.1.2.1 Nominal Voltage\n 2.1.2.2 Operating Time\n 2.1.2.3 Time for Recharge and Discharge\n 2.1.2.4 Cut Off Voltage\n 2.1.2.5 Physical Dimension\n 2.1.2.6 Environmental Conditions\n 2.1.2.7 Total Cost\n 2.2 Internet of Things\n 2.2.1 IoT – Battery Market\n 2.2.2 IoT - Battery Marketing Strategy\n 2.2.2.1 Based on the Type\n 2.2.2.2 Based on the Rechargeability\n 2.2.2.3 Based on the Region\n 2.2.2.4 Based on the Application\n 2.3 Power of IoT Devices in Battery Management System\n 2.3.1 Power Management\n 2.3.2 Energy Harvesting\n 2.3.3 Piezo-Mechanical Harvesting\n 2.3.4 Batteries Access to IoT Pioneers\n 2.3.5 Factors for Powering IoT Devices\n 2.3.5.1 Temperature\n 2.3.5.2 Environmental Factors\n 2.3.5.3 Power Budget\n 2.3.5.4 Form Factor\n 2.3.5.5 Status of the Battery\n 2.3.5.6 Shipment\n 2.4 Battery Life Estimation of IoT Devices\n 2.4.1 Factors Affecting the Battery Life of IoT Devices\n 2.4.2 Battery Life Calculator\n 2.4.3 Sleep Modes of IoT Processors\n 2.4.3.1 No Sleep\n 2.4.3.2 Modem Sleep\n 2.4.3.3 Light Sleep\n 2.4.3.4 Deep Sleep\n 2.4.4 Core Current Consumption\n 2.4.5 Peripheral Current Consumption\n 2.5 IoT Networking Technologies\n 2.5.1 Selection of an IoT Sensor\n 2.5.2 IoT - Battery Technologies\n 2.5.3 Battery Specifications\n 2.5.4 Battery Shelf Life\n 2.6 Conclusion\n References\nChapter 3 Smart Grid - Overview, Challenges and Security Issues\n 3.1 Introduction to the Chapter\n 3.2 Smart Grid and Its Uses\n 3.3 The Grid as it Stands-What’s at Risk?\n 3.3.1 Reliability\n 3.3.2 Efficiency\n 3.3.3 Security\n 3.3.4 National Economy\n 3.4 Creating the Platform for Smart Grid\n 3.4.1 Consider the ATM\n 3.5 Smart Grid in Power Plants\n 3.5.1 Distributed Power Flow Control\n 3.5.2 Power System Automation\n 3.5.3 IT Companies Disrupting the Energy Market\n 3.6 Google in Smart Grid\n 3.7 Smart Grid in Electric Cars\n 3.7.1 Vehicle-to-Grid\n 3.7.2 Challenges in Smart Grid Electric Cars\n 3.7.3 Toyota and Microsoft in Smart Electric Cars\n 3.8 Revisit the Risk\n 3.8.1 Reliability\n 3.8.2 Efficiency\n 3.8.3 Security\n 3.8.4 National Economy\n 3.9 Summary\n References\nChapter 4 IoT-Based Energy Management Strategies in Smart Grid\n 4.1 Introduction\n 4.2 Application of IoT for Energy Management in Smart Grids\n 4.3 Energy Management System\n 4.3.1 Objectives of EMS\n 4.3.2 Control Frameworks of EMS\n 4.3.2.1 Centralized Approach\n 4.3.2.2 Decentralized Approach\n 4.3.2.3 Hierarchical Approach\n 4.4 Types of EMS at Smart Grid\n 4.4.1 Smart Home EMS\n 4.4.2 Smart Building EMS\n 4.5 Participants of EMS\n 4.5.1 Network Operator\n 4.5.2 Data and Communication Technologies\n 4.5.3 Aggregators\n 4.6 DER Scheduling\n 4.7 Important Factors for EMS Establishment\n 4.7.1 Uncertainty Modeling and Management Methods\n 4.7.2 Power Quality Management\n 4.7.3 DSM and DR Programs\n 4.8 Optimization Approaches for EMS\n 4.8.1 Mathematical Approaches\n 4.8.2 Heuristic Approaches\n 4.8.3 Metaheuristic Approaches\n 4.8.4 Other Programming Approaches\n 4.9 Conclusion\n References\nChapter 5 Integrated Architecture for IoTSG: Internet of Things (IoT) and Smart Grid (SG)\n 5.1 Introduction\n 5.1.1 Designing of IoT Architecture\n 5.1.2 IoT Characteristics\n 5.2 Introduction to Smart Grid\n 5.2.1 Smart Grid Technologies (SGT)\n 5.3 Integrated Architecture of IoT and Smart Grid\n 5.3.1 Safety Concerns\n 5.3.2 Security Issues\n 5.4 Smart Grid Security Services Based on IoT\n References\nChapter 6 Exploration of Assorted Modernizations in Forecasting Renewable Energy Using Low Power Wireless Technologies for IoTSG\n 6.1 Introduction to the Chapter\n 6.1.1 Fossil Fuels and Conventional Grid\n 6.1.2 Renewable Energy and Smart Grid\n 6.2 Intangible Architecture of Smart Grid (SG)\n 6.3 Internet of Things (IoT)\n 6.4 Renewable Energy Source (RES)- Key Technology for SG\n 6.4.1 Renewable Energy: Basic Concepts and Readiness\n 6.4.2 Natural Sources of Renewable Energy\n 6.4.3 Major Issues in Following RES to SG\n 6.4.4 Integration of RES with SG\n 6.4.5 SG Renewable Energy Management Facilitated by IoT\n 6.4.6 Case Studies on Smart Grid: Renewable Energy Perception\n 6.5 Low Power Wireless Technologies for IoTSG\n 6.5.1 Role of IoT in SG\n 6.5.2 Innovations in Low Power Wireless Technologies\n 6.5.3 Wireless Communication Technologies for IoTSG\n 6.5.4 Case Studies on Low Power Wireless Technologies Used in IoTSG\n 6.6 Conclusion\n References\nChapter 7 Effective Load Balance in IOTSG with Various Machine Learning Techniques\n I. Introduction\n II. IoT in Big Data\n III. IoT in Machine Learning\n IV. Machine Learning Methods in IoT\n V. IoT with SG\n VI. Deep Learning with IoT\n VII. Challenges in IoT for SG\n VIII. IoT Applications for SG\n IX. Application of IoT in Various Domain\n X. Conclusion\n References\nChapter 8 Fault and Delay Tolerant IoT Smart Grid\n 8.1 Introduction\n 8.1.1 The Structures of the Intelligent Network\n 8.1.1.1 Operational Competence\n 8.1.1.2 Energy Efficiency\n 8.1.1.3 Flexibility in Network Topology\n 8.1.1.4 Reliability\n 8.1.2 Need for Smart Grid\n 8.1.3 Motivation for Enabling Delay Tolerant IoT\n 8.1.4 IoT-Enabled Smart Grid\n 8.2 Architecture\n 8.3 Opportunities and Challenges in Delay Tolerant Network for the Internet of Things\n 8.3.1 Design Goals\n 8.4 Energy Efficient IoT Enabled Smart Grid\n 8.5 Security in DTN IoT Smart Grid\n 8.5.1 Safety Problems\n 8.5.2 Safety Works for the Internet of Things-Based Intelligent Network\n 8.5.3 Security Standards for the Smart Grid\n 8.5.3.1 The Design Offered by NIST\n 8.5.3.2 The Design Planned by IEEE\n 8.6 Applications of DTN IoT Smart Grid\n 8.6.1 Household Energy Management in Smart Grids\n 8.6.2 Data Organization System for Rechargeable Vehicles\n 8.6.3 Advanced Metering Infrastructure (AMI)\n 8.6.4 Energy Organization\n 8.6.5 Transmission Tower Protection\n 8.6.6 Online Monitoring of Power Broadcast Lines\n 8.7 Conclusion\n References\nChapter 9 Significance of Block Chain in IoTSG - A Prominent and Reliable Solution\n 9.1 Introduction\n 9.2 Trustful Difficulties with Monetary Communications for IoT Forum\n 9.3 Privacy in Blockchain Related Work\n 9.4 Initial Preparations\n 9.4.1 Blockchain Overview\n 9.4.2 k-Anonymity\n 9.4.2.1 Degree of Anonymity\n 9.4.2.2 Data Forfeiture\n 9.5 In the IoT Power and Service Markets, Reliable Transactions and Billing\n 9.5.1 Connector or Bridge\n 9.5.2 Group of Credit-Sharing\n 9.5.3 Local Block\n 9.6 Potential Applications and Use Cases\n 9.6.1 Utilities and Energy\n 9.6.2 Charging of Electric Vehicles\n 9.6.3 Credit Transfer\n 9.7 Proposed Work Execution\n 9.7.1 Creating the Group of Energy Sharing\n 9.7.2 Handling of Transaction\n 9.8 Investigation of Secrecy and Trustworthy\n 9.8.1 Trustworthy\n 9.8.2 Privacy-Protection\n 9.8.2.1 Degree of Confidentiality\n 9.8.2.2 Data Forfeiture\n 9.8.3 Evaluation of Results\n 9.9 Conclusion\n References\nChapter 10 IoTSG in Maintenance Management\n 10.1 Introduction to the Chapter\n 10.2 IoT in Smart Grid\n 10.2.1 Uses and Facilities in SG\n 10.2.2 Architectures in SG\n 10.3 IoT in the Generation Level, Transmission Level, Distribution Level\n 10.4 Challenges and Future Research Directions in SG\n 10.5 Components for Predictive Management\n 10.6 Data Management and Infrastructure of IoT for Predictive Management\n 10.6.1 PHM Algorithms for Predictive Management\n 10.6.2 Decision Making with Predictive Management\n 10.7 Research Challenges in the Maintenance of Internet of Things\n 10.8 Summary\n References\nChapter 11 Intelligent Home Appliance Energy Monitoring with IoT\n 11.1 Introduction\n 11.2 Survey on Energy Monitoring\n 11.3 Internet of Things System Architecture\n 11.4 Proposed Energy Monitoring System with IoT\n 11.5 Energy Management Structure (Proposed)\n 11.6 Implementation of the System\n 11.6.1 Implementation of IoT Board\n 11.6.2 Software Implementation\n 11.7 Smart Home Automation Forecasts\n 11.7.1 Energy Measurement\n 11.7.2 Periodically Updating the Status in the Cloud\n 11.7.3 Irregularity Detection\n 11.7.4 Finding the Problems with the Device\n 11.7.5 Indicating the House Owner About the Issues\n 11.7.6 Suggestions for Remedial Actions\n 11.8 Energy Reduction Based on IoT\n 11.8.1 House Energy Consumption (HEC) - Cost Saving\n 11.9 Performance Evaluation\n 11.9.1 Data Analytics and Visualization\n 11.10 Benefits for Different User Categories\n 11.11 Results and Discussion with Benefits of User Categories\n 11.12 Summary\n References\nChapter 12 Applications of IoTSG in Smart Industrial Monitoring Environments\n 12.1 Introduction\n 12.2 Energy Management\n 12.3 Role of IoT and Smart Grid in the Banking Industry\n 12.3.1 Application of IoT in the Banking Sector\n 12.3.1.1 Customer Relationship Management (CRM)\n 12.3.1.2 Loan Sanctions\n 12.3.1.3 Customer Service\n 12.3.1.4 Leasing Finance Automation\n 12.3.1.5 Capacity Management\n 12.3.2 Application of Smart Grid in the Banking Sector\n 12.4 Role of IoT and Smart Grid in the Automobile Industry\n 12.4.1 Application of IoT in the Automobile Industry\n 12.4.1.1 What Exactly is the Internet of Things (IoT) Mean to the Automobile Sector?\n 12.4.1.2 Transportation and Logistics\n 12.4.1.3 Connected Cars\n 12.4.1.4 Fleet Management\n 12.4.2 Application of Smart Grid (SG) in the Automobile Industry\n 12.4.2.1 Smart Grid Can Change the Face of the Automobile Industry\n 12.4.2.2 Smart Grid and Energy Efficient Mobility System\n 12.5 Role of IoT and SG in Healthcare Industry\n 12.5.1 Applications of IoT in Healthcare Sector\n 12.5.2 Application of Smart Grid (SG) in Health Care Sector\n 12.6 IoT and Smart Grid in Energy Management - A Way Forward\n 12.7 Conclusion\n References\nChapter 13 Solar Energy Forecasting for Devices in IoT Smart Grid\n 13.1 Introduction\n 13.2 Role of IoT in Smart Grid\n 13.3 Clear Sky Models\n 13.3.1 REST2 Model\n 13.3.2 Kasten Model\n 13.3.3 Polynomial Fit\n 13.4 Persistence Forecasts\n 13.5 Regressive Methods\n 13.5.1 Auto-Regressive Model\n 13.5.2 Moving Average Model\n 13.5.3 Mixed Auto Regressive Moving Average Model\n 13.5.4 Mixed Auto Regressive Moving Average Model with Exogeneous Variables\n 13.6 Non-Linear Stationary Models\n 13.7 Linear Non-Stationary Models\n 13.7.1 Auto Regressive Integrated Moving Average Models\n 13.7.2 Auto-Regressive Integrated Moving Average Model with Exogenous Variables\n 13.8 Artificial Intelligence Techniques\n 13.8.1 Artificial Neural Network\n 13.8.2 Multi-Layer Perceptron\n 13.8.3 Deep Learning Model\n 13.8.3.1 Stacked Auto-Encoder\n 13.8.3.2 Deep Belief Network\n 13.8.3.3 Deep Recurrent Neural Network\n 13.8.3.4 Deep Convolutional Neural Network\n 13.8.3.5 Stacked Extreme Learning Machine\n 13.8.3.6 Generative Adversarial Network\n 13.8.3.7 Comparison of Deep Learning Models for Solar Energy Forecast\n 13.9 Remote Sensing Model\n 13.10 Hybrid Models\n 13.11 Performance Metrics for Forecasting Techniques\n 13.12 Conclusion\n References\nChapter 14 Utilization of Wireless Technologies in IoTSG for Energy Monitoring in Smart Devices\n 14.1 Introduction to Internet of Things\n 14.2 IoT Working Principle\n 14.3 Benefits of IoT\n 14.4 IoT Applications\n 14.5 Introduction to Smart Home\n 14.5.1 Benefits of Smart Homes\n 14.6 Problem Statement\n 14.6.1 Methodology\n 14.7 Introduction to Wireless Communication\n 14.7.1 Merits of Wireless\n 14.8 How Modbus Communication Works\n 14.8.1 Rules for Modbus Addressing\n 14.8.2 Modbus Framework Description\n 14.8.2.1 Function Code\n 14.8.2.2 Cyclic Redundancy Check\n 14.8.2.3 Data Storage in Modbus\n 14.9 MQTT Protocol\n 14.9.1 Pub/Sub Architecture\n 14.9.2 MQTT Client Broker Communication\n 14.9.3 MQTT Standard Header Packet\n 14.9.3.1 Fixed Header\n 14.10 System Architecture\n 14.11 IoT Based Electronic Energy Meter-eNtroL\n 14.11.1 Components Used in eNtroL\n 14.11.2 PZEM-004t Energy Meter\n 14.11.3 Wi-Fi Module\n 14.11.4 Switching Device\n 14.11.5 230V AC to 5V Dc Converter\n 14.11.6 LM1117 IC- 5V to 3.3V Converter\n 14.12 AC Control System for Home Appliances – Switch2Smart\n 14.12.1 Opto-Coupler- H11AA1 IC\n 14.12.2 TRIAC Driven Opto Isolator- MOC3021M IC\n 14.12.3 TRIAC, BT136-600 IC\n 14.13 Scheduling Home Appliance Using Timer – Switch Binary\n 14.14 Hardware Design\n 14.14.1 Kaicad Overview\n 14.14.2 PCB Designing Using Kaicad\n 14.14.2.1 Designing of eNtroL Board Using Kaicad\n 14.14.2.2 Designing of Switch2smart Board Using Kaicad\n 14.14.2.3 Designing of Switch Binary Board Using Kaicad\n 14.15 Implementation of the Proposed System\n 14.16 Testing and Results\n 14.16.1 Testing of eNtrol\n 14.16.2 Testing of Switch2Smart\n 14.16.3 Testing of SwitchBinary\n 14.17 Conclusion\n References\nChapter 15 Smart Grid IoT: An Intelligent Energy Management in Emerging Smart Cities\n 15.1 Overview of Smart Grid and IoT\n 15.1.1 Smart Grid\n 15.1.2 Smart Grid Data Properties\n 15.1.3 Operations on Smart Grid Data\n 15.2 IoT Application in Smart Grid Technologies\n 15.2.1 Power Transmission Line - Online Monitoring\n 15.2.2 Smart Patrol\n 15.2.3 Smart Home Service\n 15.2.4 Information System for Electric Vehicle\n 15.3 Technical Challenges of Smart Grid\n 15.3.1 Inadequacies in Grid Infrastructure\n 15.3.2 Cyber Security\n 15.3.3 Storage Concerns\n 15.3.4 Data Management\n 15.3.5 Communication Issues\n 15.3.6 Stability Concerns\n 15.3.7 Energy Management and Electric Vehicle\n 15.4 Energy Efficient Solutions for Smart Cities\n 15.4.1 Lightweight Protocols\n 15.4.2 Scheduling Optimization\n 15.4.3 Energy Consumption\n 15.4.4 Cloud Based Approach\n 15.4.5 Low Power Transceivers\n 15.4.6 Cognitive Management Framework\n 15.5 Energy Conservation Based Algorithms\n 15.5.1 Genetic Algorithm (GA)\n 15.5.2 BFO Algorithm\n 15.5.3 BPSO Algorithm\n 15.5.4 WDO Algorithm\n 15.5.5 GWDO Algorithm\n 15.5.6 WBFA Algorithm\n 15.6 Conclusion\n References\nIndex\nEULA




پست ها تصادفی