توضیحاتی در مورد کتاب Solar Cooling Handbook: A Guide to Solar Assisted Cooling and Dehumidification Processes
نام کتاب : Solar Cooling Handbook: A Guide to Solar Assisted Cooling and Dehumidification Processes
عنوان ترجمه شده به فارسی : کتاب خنک کننده خورشیدی: راهنمای فرآیندهای خنک کننده و رطوبت زدایی با کمک خورشیدی
سری :
نویسندگان : Hans-Martin Henning (editor), Mario Motta (editor), Daniel Mugnier (editor)
ناشر : Ambra Verlag
سال نشر : 2013
تعداد صفحات : 368
ISBN (شابک) : 9783990434390 , 9783990434383
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 61 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Contents\nPreface\nNotes from the editors\n1 Introduction\n2 Meteorological data, heating and cooling loads and load sub-systems\n 2.1 Solar radiation, ambient temperature and humidity\n 2.1.1 Average quantities\n 2.2 Availability of climatic data, sources of weather data\n 2.3 Building space heating, domestic hot water and air conditioning needs\n 2.3.1 Efficient building design practice\n 2.3.2 Heating and cooling load: definitions and calculation methods\n 2.3.3 Domestic hot water load profiles\n 2.4 Industrial heating and cooling\n 2.4.1 Preliminary analysis required data\n 2.4.2 System design data: thermal load profile\n 2.5 The load sub-system – air-conditioning equipment\n 2.5.1 All-air systems\n 2.5.2 Water systems\n 2.5.3 Air-water systems\n3 Components of solar thermal systems\n 3.1 The solar thermal collector\n 3.1.1 Assessment of the collector’s thermal performance\n 3.1.2 C ollector yield for long term performance prediction\n 3.2 Solar thermal collector technologies\n 3.2.1 Flat-plate collectors\n 3.2.2 Solar air collector\n 3.2.3 Evacuated tube collectors\n 3.2.4 Evacuated flat plate collectors\n 3.2.5 PV-thermal hybrid collectors\n 3.2.6 Stationary concentrating collectors\n 3.2.7 Solar concentrating tracking collectors (PTC, LFR)\n 3.2.8 Summary\n 3.3 Testing and certification of solar thermal collectors\n 3.3.1 Applicable test standards\n 3.3.2 C ertification schemes\n 3.4 Heat storage\n 3.4.1 Hot water stores\n 3.4.2 Storages with phase change materials\n 3.5 Backup heater\n4 Heat driven cooling technologies: closed cycles\n 4.1 Principles of absorption and adsorption cooling\n 4.1.1 Absorption chillers\n 4.1.2 Adsorption chillers\n 4.2 Other closed cycles\n 4.3 Complementary components – Heat rejection systems\n 4.3.1 The challenge of heat rejection\n 4.3.2 Types of heat rejection devices\n 4.3.3 C old storage\n5 Heat driven cooling technologies: open cycle systems\n 5.1 Principles and materials of desiccant cooling systems\n 5.2 Solid desiccant systems\n 5.2.1 System performance\n 5.2.2 Solar desiccant cooling systems (SDEC): examples, control and operation\n 5.2.3 Possible operational problems\n 5.2.4 Main components of solid DEC air handling units\n 5.3 Liquid dessicant systems\n6 Solar cooling system characterization\n 6.1 Generic system schemes\n 6.1.1 Basic system topology\n 6.1.2 C omposition of generic systems\n 6.1.3 System control and hydraulics\n 6.1.4 Selection guide and system examples\n 6.2 Pre-engineered systems\n 6.3 Custom-made systems\n 6.3.1 L arge-capacity installations\n 6.3.2 Desiccant cooling systems\n7 Energy and economic figures for solar cooling\n 7.1 Performance of conventional chillers\n 7.2 Performance of thermally driven chillers\n 7.3 Energy performance of solar driven cooling systems\n 7.3.1 Fractional PE savings\n 7.3.2 Primary energy sensitivity analysis of solar cooling systems\n 7.3.3 O ther useful energy performance parameters\n 7.4 Environmental impact analysis\n 7.5 Economic figures of solar cooling systems\n8 Overall system design, sizing and design tools\n 8.1 Suitability analysis of a targeted building for a defined solar air-conditioning application\n 8.1.1 Presentation and objectives of the check-list\n 8.1.2 Selection of the appropriate system technology: the SAC decisionscheme\n 8.1.3 Selection of the proper type of solar collectors for the selected air-conditioning system and thermally driven cooling equipment\n 8.2 System sizing\n 8.2.1 Guidelines\n 8.2.2 Simple pre-design tools\n 8.2.3 Detailed simulation tools\n9 Solar thermal system design\n 9.1 Field configuration parallel/series, high/low-flow\n 9.1.1 General characteristic of high/low-flow systems\n 9.1.2 Heat needs of solar cooling systems\n 9.1.3 Heat needs of domestic hot water and space heating preparation\n 9.1.4 Possible layouts and control strategies for collector fields for solar cooling systems with DHW and SH production (solar combi-plus-systems)\n 9.2 Stagnation of solar plants\n 9.2.1 Stagnation in collector fields\n 9.2.2 Implications of stagnation on the solar pump group\n 9.3 Stratification and necessary hot water storage tank volume\n 9.3.1 Heat input from solar collectors to the heat stores\n 9.3.2 Heat input from solar collectors into the heat store for solar combi-systems with solar cooling\n 9.3.3 Necessary volumes in the tank for solar combi-systems without cooling\n 9.3.4 Storage volume for solar combi-systems with solar cooling\n 9.3.5 Stratification\n 9.4 Other components of the solar loop for solar cooling systems\n10 Pre-engineered systems: built examples and experiences\n 10.1 What can be expected from a pre-engineered system?\n 10.2 Built examples\n 10.3 Experiences\n 10.3.1 Installation issues\n 10.3.2 Commissioning\n 10.3.3 Maintenance issues\n 10.3.4 C ontrol issues\n 10.4 Recommendations for system suppliers\n 10.4.1 Electricity consumption of auxiliary components\n 10.4.2 Heat rejection components\n 10.4.3 Part load operation\n 10.4.4 Pressure drop in the system\n 10.4.5 Nominal flow rates – high temperature differences\n 10.4.6 Use of a cold store\n 10.4.7 Influence of heat rejection temperature\n11 Experiences from installed custom made systems\n 11.1 Introduction\n 11.2 Built examples\n 11.2.1 Example 1: office building in Gleisdorf – Austria\n 11.2.2 Example 2: education centre in La Reunion island – France\n 11.2.3 Example 3: Industrial application in Grombalia – Tunisia\n 11.3 Experiences\n 11.3.1 C omponents integration and layouts\n 11.3.2 C omponent sizing\n 11.3.3 C ontrol strategies\n 11.3.4 Commissioning\n12 DEC systems: built examples and experiences\n 12.1 Built examples\n 12.1.1 ENERGY base\n 12.1.2 Munich Airport\n 12.1.3 DREAM Unipa\n 12.2 Experiences\n 12.3 Control strategy definition\n13 Summary and outlook\n 13.1 Overall technology status\n 13.2 Energy performance\n 13.3 Basic design guidelines and operation principles\n 13.4 Economics\n 13.5 Outlook\n14 Appendix\n 14.1 The IEA Solar Heating & Cooling Programme\n 14.2 TASK 38 Solar Air-Conditioning and Refrigeration\n 14.2.1 Objectives\n 14.3 TASK 38 management structure\n 14.3.1 O perating Agent\n 14.3.2 Subtask Leaders\n 14.4 Institutions participating in Task 38