توضیحاتی در مورد کتاب :
حل مشکلات زیرساخت شهری با استفاده از فناوریهای شهر هوشمند کاملترین راهنما برای ادغام نسل بعدی فناوریهای شهر هوشمند در اساس مناطق شهری در سراسر جهان است که نشان میدهد چگونه مناطق شهری کارآمدتر، پایدارتر و ایمنتر شوند. . شهرهای هوشمند سیستم های پیچیده ای از سیستم ها هستند که تمام جنبه های زندگی شهری مدرن را در بر می گیرند. یکی از مؤلفههای کلیدی موفقیت آنها ایجاد اکوسیستمی از زیرساختهای هوشمند است که میتوانند با هم کار کنند تا تعاملات پویا و بیدرنگ بین زیرسیستمهای شهری مانند حملونقل، انرژی، مراقبتهای بهداشتی، مسکن، غذا، سرگرمی، کار، تعاملات اجتماعی و حکومت را فراهم کنند. حل مشکلات زیرساخت شهری با استفاده از فناوریهای شهر هوشمند مرجع کاملی برای ایجاد دیدگاهی جامع و در سطح سیستم در مورد شهرهای هوشمند و پایدار، استفاده از تجزیه و تحلیل دادههای بزرگ و استراتژیها برای برنامهریزی، منطقهبندی و خطمشی عمومی است. این پوشش عمیق و راه حل های عملی برای چگونگی استفاده شهرهای هوشمند از سرمایه فکری و اجتماعی ساکنان، پایداری محیطی، افزایش شخصی سازی، تحرک و کیفیت بالاتر زندگی ارائه می دهد.
فهرست مطالب :
Cover
Solving Urban Infrastructure Problems Using Smart City Technologies
Copyright
Dedication
Contents
List of Contributors
About the editor
Foreword
Preface
Organization of this book
Part I: Overview of smart cities and infrastructure technologies: a comprehensive introduction
Part II: Planning, design, development, and management of smart cities and infrastructure technologies
Part III: Renewable energy technologies for smart cities and the critical infrastructure
Part IV: Standardization and regulation of technologies and security for smart cities and the critical infrastructure
Part V: Smart-grid technologies for smart cities and the critical infrastructure
Part VI: Recommended technologies and solutions for smart cities and the critical infrastructure
Part VII: The future of smart cities and the critical infrastructure
Supplemental materials
Acknowledgments
1 Introduction to the critical success factors of E-government adoption of the utilization of emerging smart cities technol...
1.1 Introduction
1.2 E-government and M-government
1.3 M-government adoption in developing countries
1.4 Smart government in developing counties: the case of United Arab Emirates
1.5 Conceptual model of smart government adoption
1.6 Conclusion and future research
1.7 Summary
1.8 Chapter review questions/exercises
1.8.1 True/False
1.8.2 Multiple choice
1.8.3 Exercise
1.8.3.1 Problem
1.8.4 Hands-on projects
1.8.4.1 Problem
1.8.5 Case projects
1.8.5.1 Problem
1.8.6 Optional team case project
1.8.6.1 Problem
References
2 Smart-city infrastructure components
2.1 Introduction
2.2 Smart-city definitions
2.3 Smart-city key foundations (PILARS)
2.4 Smart-city infrastructure platforms and domains
2.4.1 Smart-society infrastructures
2.4.1.1 Smart people
2.4.1.1.1 Education/digital education
2.4.1.1.2 Human capital
2.4.1.1.3 Public participation in life
2.4.1.1.4 Community engagement
2.4.1.2 Smart governance
2.4.1.2.1 E-government
2.4.1.2.2 E-governance
2.4.1.2.3 Citizenry engagement
2.4.1.2.4 Distance services
2.4.1.3 Smart economy
2.4.1.3.1 E-Business and finance
2.4.1.3.2 Tourism
2.4.1.3.3 Culture
2.4.1.3.4 Entrepreneurship
2.4.1.3.5 Innovative economy
2.4.1.3.6 Smart marketing
2.4.1.4 Smart lifestyle
2.4.1.4.1 Health care
2.4.1.4.2 Social services
2.4.1.4.3 Smart surveillance
2.4.1.4.4 Social inclusion
2.4.1.4.5 Flexible workplaces
2.4.1.4.6 Smart home
2.4.2 Smart physical infrastructures
2.4.2.1 Smart environment
2.4.2.1.1 Energy
2.4.2.1.2 Water
2.4.2.1.3 Waste and sanitation
2.4.2.1.4 Pollution
2.4.2.1.5 Building
2.4.2.1.6 Relocation
2.4.2.2 Smart mobility
2.4.2.2.1 Intelligent public transport/E-mobility
2.4.2.2.2 Traffic
2.4.2.2.3 Departure: Locomotion
2.4.2.2.4 Logistic
2.4.2.3 Smart utility
2.4.2.3.1 Internet technologies
2.4.2.3.2 Building information modeling and services
2.4.2.3.3 Urban facilities
2.4.2.4 Smart living
2.4.2.4.1 E-connection
2.4.2.4.2 Housing/shelter
2.4.2.4.3 Cultural facilities
2.4.2.4.4 Safety, security, and emergency
2.4.2.5 Smart digital infrastructures
2.4.2.6 Smart network
2.4.2.6.1 Socially reliable networks
2.4.2.6.2 International connectivity
2.4.2.6.3 Smart-city dashboard
2.4.2.6.4 Surveillance network
2.4.2.7 Smart data
2.4.2.7.1 Data resource
2.4.2.7.2 Data analysis
2.4.2.7.3 Information linkage
2.4.2.8 Smart sensor
2.4.2.8.1 Citizen sensors
2.4.2.8.2 Urban sensors
2.4.2.8.3 Smart communication
2.4.2.8.4 E-communication
2.4.2.8.5 Industry 4.0
2.5 Summary
2.6 Chapter review questions/exercises
2.6.1 True/false
2.6.2 Multiple choice
2.6.3 Exercise
2.6.3.1 Problem
2.6.4 Hands-on projects
2.6.4.1 Project
2.6.5 Case projects
2.6.5.1 Problem
2.6.6 Optional team case project
2.6.6.1 Problem
References
3 Smart buildings and urban spaces
3.1 Introduction
3.2 Smart building systems
3.2.1 Building systems hardware
3.2.2 Enterprise and integration system software
3.2.3 Smart building technologies applied in the Philippines
3.3 Building types in the urban space
3.3.1 Types of building construction in the Philippines
3.4 Permits and standards for smart buildings
3.4.1 Building permits and standards in the Philippines
3.4.2 Green building standards in the Philippines
3.4.3 A smart building case study—Stratford Building
3.5 Smart building market potentials
3.5.1 Stakeholders for smart building in the Philippines
3.5.2 Government
3.5.3 Building association
3.5.4 Real-estate developers/owners
3.5.5 Contractors
3.5.6 Designers
3.5.7 Suppliers
3.5.8 Financial institution
3.5.9 Real-estate agent
3.5.10 End-users
3.5.11 Relationship mapping
3.5.12 Market potential discussion for smart buildings in the Philippines
3.5.13 Influential factor discussion
3.6 Summary
3.7 Chapter review questions/exercises
3.7.1 True/false
3.7.2 Multiple choice
3.7.3 Exercise
3.7.3.1 Problem
3.7.4 Hands-on projects
3.7.4.1 Problem
3.7.5 Case projects
3.7.5.1 Problem
3.7.6 Optional team case project
3.7.6.1 Problem
References
4 Urban mobility systems components
4.1 Introduction
4.2 Mobility, transportation, and accessibility
4.2.1 Mobility versus transportation
4.2.2 Accessibility-based urban mobility
4.3 Evolution of urban mobility
4.3.1 The walking-horse car era (1800s–1890s)
4.3.2 The electric streetcar or tram era (1890s–1920s)
4.3.3 The automobile era (1930s–1950s)
4.3.4 The freeway era (1950s–2010s)
4.3.5 The integrated mobility era (2010s onward)
4.4 Types of transit systems
4.4.1 Collective transportation: public transit
4.4.2 Individual transportation
4.4.3 Freight transportation
4.5 The urban mobility challenge
4.6 Urban mobility in the context of sustainability
4.6.1 Sustainable urban mobility and public transport development
4.6.2 Challenges of urban transport and mobility
4.6.3 Sustainable urban mobility and land-use planning
4.7 Urban mobility in the smart-city age
4.7.1 Benefits of smart urban mobility
4.7.2 Infrastructure components of smart urban mobility system
4.7.2.1 Physical infrastructure
4.7.2.2 Operational technology
4.7.2.3 Communications technology: networks
4.7.2.4 Information technology: software
4.7.3 Switching from traditional to smart mobility
4.7.4 Integration of smart mobility solutions within and across sectors
4.7.5 Urban planners to improve planning via predictive modeling
4.8 Summary
4.9 Chapter review questions/exercises
4.9.1 True/false
4.9.2 Multiple choice
4.9.3 Exercise
4.9.3.1 Problem
4.9.4 Hands-on projects
4.9.4.1 Project
4.9.5 Case projects
4.9.5.1 Problem
4.9.6 Optional team case project
4.9.6.1 Problem
References
5 Coupling of the mobility and energy infrastructures as urban mobility needs evolve
5.1 Introduction
5.1.1 Why is this chapter needed?
5.1.2 Added value for user to read it
5.1.3 Selected components of mobility systems
5.1.3.1 Urban versus rural
5.1.3.2 Mobility infrastructure
5.1.3.3 Energy infrastructure
5.1.3.4 Electric vehicles
5.1.4 Charge points (Electric vehicle supply equipment)
5.2 Trends that shape urban mobility
5.3 An answer from energy and mobility sectors to urbanization and clean trends
5.3.1 Electric vehicles mitigate air and noise pollution
5.3.2 Commercial use of electric vehicles
5.3.3 Successful electromobility cities around the world
5.3.4 For true sustainability, a wider thinking is needed
5.3.5 Traditional transport business models
5.3.6 Mobility as a service caters to customer demands—better?
5.3.7 Shared means of transport as an alternative component to personal means
5.3.8 Improving connectivity via cars
5.4 Examples of urban mobility components
5.4.1 Optimal charging solutions for E-mobility
5.4.2 Necessity of charging hubs
5.4.3 Green charging as an alternative
5.4.4 Electric vehicles supporting the energy ecosystem—vehicle-to-grid
5.4.5 Examples of shared mobility
5.4.6 Electrified car-sharing models
5.4.7 Rise of mobility service platforms
5.5 Action recommendations for regulators
5.5.1 Right to electric vehicle chargers
5.5.2 Education and incentives for clean vehicle drivers
5.5.3 Regulation that anticipates innovation and new business models
5.5.4 Sustainable supply chains for clean transport
5.6 Outlook
5.6.1 Leisure time while traveling
5.6.2 Artificial intelligence taking over the task of driving
5.6.3 Autonomous vehicles in logistics
5.7 Summary
5.8 Chapter review questions/exercises
5.8.1 True/false
5.8.2 Multiple choice
5.8.3 Exercise
5.8.3.1 Problem
5.8.4 Hands-on projects
5.8.4.1 Project
5.8.5 Case projects
5.8.5.1 Problem
5.8.6 Optional team case project
5.8.6.1 Problem
References
6 Smart urban mobility traffic control system components
6.1 Introduction
6.2 Electric mobility
6.3 Types of electric vehicles
6.3.1 Hybrid electric vehicle
6.3.2 Plug-in hybrid electric vehicle
6.3.3 Extended range electric vehicle
6.3.4 Battery electric vehicle
6.3.5 Fuel cell electric vehicle
6.4 Electric vehicle supply equipment
6.5 Electric vehicle charging modes
6.5.1 EV connector type
6.6 Summary
6.7 Chapter review questions/exercises
6.7.1 True/false
6.7.2 Multiple choice
6.7.3 Exercise
6.7.3.1 Problem
6.7.4 Hands-on projects
6.7.4.1 Project
6.7.5 Case projects
6.7.5.1 Problem
6.7.6 Optional team case project
6.7.6.1 Problem
References
7 Urbanization and smart cities
7.1 Introduction
7.2 The future of urbanization and need for the smart city
7.2.1 Challenges with conventional planning approaches
7.3 IoT- and ICT-led initiatives as enablers of smart cities
7.3.1 Efficiency and flexibility by adopting technology
7.4 Smart cities, urban planning, and policy
7.4.1 Defining smart-city goals: guiding policy with urban planning and technology
7.5 Challenges and opportunities of smart cities
7.5.1 Need for an integrated approach
7.5.2 Outside-in approach
7.5.3 Inside-out approach
7.6 Conclusion
7.7 Summary
7.8 Chapter review questions/exercises
7.8.1 True/false
7.8.2 Multiple choice
References
8 Priority activities for smart cities and the infrastructure
8.1 Introduction
8.2 Background information
8.3 Generating the market
8.4 Blocks to the market
8.5 Expanding the market
8.6 Greening the market
8.7 Enablers
8.7.1 Smart government
8.7.2 Standardization
8.7.3 Smart incorporated city planning
8.8 Training and involving stakeholders
8.9 Summary
8.10 Chapter review questions/exercises
8.10.1 True/False
8.10.2 Multiple choice
8.10.3 Exercise
8.10.3.1 Problem
8.10.4 Hands-on projects
8.10.4.1 Project
8.10.5 Case projects
8.10.5.1 Problem
8.10.5.2 Problem
References
9 Open Data for smart cities
9.1 Introduction
9.2 The rise of urban data
9.3 Open Data, Big Data, Linked Data, and Linked Open Data
9.3.1 Big Data
9.3.2 Open Data
9.3.3 Linked Data
9.3.4 Linked Open Data and Linked Open Government Data
9.4 More about Open Data
9.4.1 Challenges
9.4.2 Free versus not free
9.4.3 Licenses
9.4.4 Open Data formats
9.4.4.1 JSON
9.4.4.2 XML
9.4.4.3 RDF and DCAT (and DCAT-AP)
9.4.4.3.1 Spreadsheets
9.4.4.3.2 Comma-separated files
9.4.4.3.3 Text documents
9.4.4.3.4 Plain text
9.4.4.3.5 Scanned images
9.4.4.3.6 HTML
9.4.4.3.7 Geospatial data
9.4.5 Five-star Linked Open Data
9.5 National paths to open data
9.5.1 The EU path
9.5.2 The US path
9.5.3 The Indian path
9.5.4 Other paths
9.6 Open Data value chain
9.6.1 Consumption/commercialization
9.6.2 Processing
9.6.3 Governance
9.6.4 Interoperability
9.6.5 Security and Trust
9.7 Eliminating silos by sharing or Open Data
9.8 Data marketplaces
9.9 Conclusion
9.10 Summary
9.11 Chapter review questions/exercises
9.11.1 True/False
9.11.2 Multiple choice
9.11.3 Exercise
9.11.3.1 Problem
9.11.4 Hands-on projects
9.11.4.1 Project
9.11.5 Case projects
9.11.5.1 Problem
9.11.6 Optional team case project
9.11.6.1 Problem
Acknowledgments
References
10 The role of citizens in smart cities and urban infrastructures
10.1 Introduction
10.2 Smart city
10.3 Citizens
10.4 Urban infrastructures
10.5 From passive citizen to active citizens
10.6 Open government
10.7 Governance
10.8 Technological governance
10.9 Hybridizations and changes in citizen governance
10.10 Citizens in the city and urbanism in smart-cities world
10.11 Practical cases
10.11.1 Barcelona Lesseps Square example
10.11.2 The Diagonal Avenue referendum in Barcelona
10.11.3 Planning cases: Yinchuan, Dubai, and Neom
10.12 Corruption and urbanism
10.13 Transparency and citizen role in urbanism and infrastructures
10.14 Superation of citizen participation topics
10.15 Summary
10.16 Chapter review questions/exercises
10.16.1 True/false
10.16.2 Multiple choice
10.16.3 Exercise
10.16.3.1 Problem
10.16.4 Hands-on projects
10.16.4.1 Project
10.16.5 Case projects start here
10.16.5.1 Problem
10.16.6 Optional team case project
10.16.6.1 Problem
References
11 Smart city and metropolitan governance
11.1 Introduction
11.2 How can cities benefit from cooperation on the smart city subject in a metropolitan area?
11.2.1 Intermunicipal coordination increases overall productivity
11.2.2 Difference in financial capacity among the cities is a common challenge
11.3 What metropolitan governance arrangement is needed?
11.3.1 An Inter-Municipal Forum or Council
11.3.1.1 The process is as important as the outcome
11.3.1.1.1 Ensure strong support by the local governments
11.3.1.1.2 Start simple and design for success
11.3.1.1.3 Agree on resourcing
11.3.1.1.4 Be clear on “Who does what”
11.3.2 More comprehensive arrangements
11.4 What are the obstacles to collaboration across jurisdictions?
11.4.1 Parochialism is a common phenomenon
11.4.2 The level of trust may not be strong enough
11.4.3 The prerequisites for effective teamwork are not there
11.5 Application of the intermunicipal cooperation arrangement
11.6 Summary
11.7 Chapter review questions/exercises
11.7.1 True/False
11.7.2 Multiple choice
11.7.3 Exercise
11.7.3.1 Problem
11.7.4 Hands-on projects
11.7.4.1 Project
11.7.5 Case projects
11.7.5.1 Problem
11.7.6 Optional team case project
11.7.6.1 Problem
References
12 Distributed energy in smart cities and the infrastructure
12.1 Introduction
12.1.1 Energy storage
12.1.2 Smart microgrids
12.1.3 Smart and sustainable balance
12.2 Smart cities
12.2.1 Distributed power generation
12.2.2 Automatic distribution system
12.2.2.1 Smarter home
12.2.3 HVAC and audio visual
12.2.4 Advanced metering system infrastructure
12.2.5 Energy storage with grid integration
12.2.6 Electric vehicle
12.3 Instrumental procedures in smart cities
12.3.1 Energy efficiency practices
12.3.2 Smart grid
12.3.3 Demand management
12.3.4 Improved access to information
12.3.5 Environmental sustainability
12.3.6 Application of Clean Technologies
12.3.7 Use of ICT
12.3.8 Citizen participation
12.3.9 Smart governance
12.3.10 Identifying the smart cities
12.4 A selection of smart cities standards
12.4.1 Process-level standards
12.4.2 Technical-level standards
12.5 Energy strategy
12.6 Factors affecting energy in smart city
12.6.1 Global governance of energy
12.6.2 Public exemplary plan
12.6.3 Carbon-free mobility plan
12.6.4 Energy refurbishment plan of buildings
12.6.5 Plan new neighborhoods
12.7 Smart-city hacking
12.7.1 Manipulation of law-enforcement response
12.7.2 The solution for smart cities
12.8 Energy efficient designs of sustainable buildings
12.8.1 Literature review and background
12.8.2 Holistic (overall) approach
12.8.3 Energy-efficient buildings
12.8.4 Energy declaration of existing buildings
12.8.5 Energy declaration of new buildings
12.9 Summary
12.10 Chapter review questions/exercises
12.10.1 True/False
12.10.2 Multiple choice
12.10.3 Exercise
12.10.3.1 Problem
12.10.4 Hands-on projects
12.10.4.1 Project
12.10.5 Case projects
12.10.5.1 Problem
12.10.6 Optional team case project
12.10.6.1 Problem
References
13 Energy efficient automated warehouse design
13.1 Introduction
13.2 Literature review
13.3 System description and model assumptions in the system
13.3.1 Operations and assumptions in the system
13.4 Simulation modeling of the system
13.4.1 Design scenarios for experiments
13.5 Results and discussion
13.5.1 Graphical results and comments
13.5.1.1 Effect of number of shuttles on average energy consumption per transaction
13.5.1.2 Effect of arrival rate on the both performance metrics
13.5.1.3 Effects of acceleration/deceleration values on both performance metrics
13.6 Suggested future works
13.7 Summary
13.8 Chapter review questions/exercises
13.8.1 True/false
13.8.2 Multiple choice
13.8.3 Exercise
13.8.3.1 Problem
13.8.4 Hands-on projects
13.8.4.1 Project
13.8.5 Case projects
13.8.5.1 Problem
13.8.6 Optional team case project
13.8.6.1 Problem
Acknowledgment
References
14 Smart utilities
14.1 Introduction
14.2 Smart solutions
14.2.1 Overview
14.2.2 Consumer requirements and expectations
14.2.3 Energy need
14.2.4 National energy plans
14.2.5 Resource availability
14.2.6 Smart infrastructure
14.2.7 Virtual utility
14.2.8 Benefits of VU model
14.3 Electricity
14.3.1 Overview
14.3.2 Infrastructure
14.3.3 Regulations and standards
14.3.4 Ongoing failures of existing networks
14.3.5 Advanced control methods
14.3.6 Smart energy hub
14.3.7 Smart grid
14.3.8 Advantages of smart grids
14.3.9 Smart stations
14.3.10 Smart distribution
14.3.11 Smart metering
14.3.12 Integrated communication
14.3.13 Review of state-of-the-art studies
14.4 Water
14.4.1 Overview
14.4.2 Infrastructure
14.4.3 Smart water grid
14.4.4 Smart meter
14.4.5 Management of water utility system
14.4.6 Inventory management
14.4.7 Subscriber management
14.4.8 Geographical information system and infrastructure management
14.4.9 SCADA-database based control surveillance system
14.4.10 Review of state-of-the-art studies
14.5 Natural gas
14.5.1 Overview
14.5.2 Infrastructure
14.5.3 Natural gas grid
14.5.4 Management of natural gas system
14.5.5 Device maintenance
14.5.6 Customer requirements and expectations
14.5.7 Review of state-of-the-art studies
14.6 Summary and business models for utility industry
14.7 Chapter review questions/exercises
14.7.1 True/false
14.7.2 Multiple choice
14.7.3 Exercise
14.7.3.1 Problem
14.7.4 Hands-on projects
14.7.4.1 Project
14.7.5 Case projects
14.7.5.1 Problem
14.7.6 Optional team case project
14.7.6.1 Problem
References
15 Smart cities and infrastructure standardization requirements
15.1 Introduction
15.2 Data monetization: open data to increase community engagement
15.3 Smart-city technology architecture
15.4 Smart-city application architecture
15.4.1 Smart tourism
15.4.2 Hygiene/cleanliness drive
15.4.3 Traffic and travel management
15.4.4 E-buses
15.4.5 E-rickshaw
15.4.6 Public bicycle sharing
15.4.7 Passenger information system through mobile application and travel cards
15.4.8 Intelligent transport management system
15.4.9 Management of E-charging stations
15.4.10 Speed management, based on the time of the day
15.4.11 Management of traffic lights
15.4.12 Building management
15.4.12.1 Usage-based cleaning
15.4.12.2 Automated garage entry
15.4.12.3 Renewable energy and smarter energy utilization
15.4.12.4 Water conservation/harvesting
15.4.13 Disease management
15.4.14 Road and city cleanliness
15.4.15 Special care for elders
15.4.16 Care for physically disabled
15.4.17 Usage of data for safety
15.4.18 Fire safety
15.4.19 Smart contracts
15.4.20 Smart grid
15.4.21 Smart water
15.4.22 Smart homes
15.4.23 Smart working spaces
15.4.24 Smart waiting areas and smart advertisements
15.4.25 Smart urban forests
15.4.26 Research, education, skilling, and reskilling institutes
15.4.27 Medical institutes and hospitals
15.4.28 Start-up ecosystem and investor forums
15.5 Smart energy and light
15.6 Gearing-up for smart health in cities
15.6.1 Supported technology environment for smart healthcare
15.6.2 Expected benefits of these applications in smart city
15.7 City services’ architecture and assets management
15.7.1 Asset management and data aggregation services
15.7.2 Tourist spots and hotel management
15.7.3 Streetlights
15.7.4 CCTV across cities
15.7.5 Manpower skill database
15.7.6 Smart entertainment
15.7.7 Cloud kitchens
15.7.8 Connectivity of assets across the city and managing solar lights/energy storage
15.7.9 Solid waste management and zero waste policy and green houses
15.7.10 Disaster/emergency management and emergency response teams
15.7.11 Smart governance
15.7.11.1 Analysis
15.7.11.2 Policy making
15.7.11.3 Planning
15.7.11.4 Execution
15.7.11.5 Enforcement
15.8 Smart-city data democracy architecture
15.8.1 Components of smart-city data
15.8.2 Data infrastructure
15.8.3 Connectivity and data hub
15.8.4 Smart city metadata model
15.8.5 AI for smarter decisions in smarter cities
15.8.6 The need for new operational requirements, skills, and expertise
15.9 Security, privacy, and business continuity concerns of data hub
15.10 Summary
15.11 Chapter review questions/exercises
15.11.1 True/False
15.11.2 Multiple choice
15.11.3 Exercise
15.11.3.1 Problem
15.11.4 Hands-on projects
15.11.4.1 Projects
15.11.5 Case projects
15.11.5.1 Problem
15.11.6 Optional team case project
15.11.6.1 Problem
References
16 Securing smart-grid infrastructure against emerging threats
16.1 Introduction
16.2 Emerging cyber threats targeting smart grid
16.2.1 Ukraine power plant attacks
16.2.2 Aurora generator test
16.3 Security solutions for protecting smart grid
16.3.1 Limitations of existing cyber-security solutions
16.4 Supervisory control and data acquisition command authentication as additional line of defense
16.4.1 Trends in supervisory control and data acquisition command authentication
16.4.2 Command authentication using power flow dynamics simulation
16.4.3 Active command mediation defense (A*CMD) system and practical integration
16.4.3.1 Artificial command-delaying
16.4.3.2 Overall A*CMD system architecture and deployment options
16.4.3.3 Deployment option 1: All-in-one substation gateway
16.4.3.4 Deployment option 2: Bump-in-the-wire approach
16.5 Summary
16.6 Chapter review questions/exercises
16.6.1 True/false
16.6.2 Multiple choice
16.6.3 Exercise
16.6.3.1 Problem
16.6.4 Hands-on projects
16.6.4.1 Project
16.6.5 Case projects
16.6.5.1 Problem
16.6.6 Optional team case project
16.6.6.1 Problem
References
17 Components of the smart-grid system
17.1 Introduction
17.2 Components of smart grid
17.2.1 Smart appliances
17.2.1.1 Energy use
17.2.1.2 Communication: connectivity and home savings
17.2.2 Electric vehicles
17.2.2.1 Smart charging of electric vehicles
17.2.3 Smart meters
17.2.3.1 Working principle of smart meters
17.2.4 Smart substation
17.2.5 Distributed generation
17.2.6 Phasor measurement unit
17.2.7 Integrated communication system
17.2.8 Sensing and measurements
17.3 Summary
17.4 Chapter review questions/exercises
17.4.1 True/false
17.4.2 Multiple choice
17.4.3 Exercise
17.4.3.1 Problem
17.4.4 Hands-on projects
17.4.4.1 Project
17.4.5 Case projects
17.4.5.1 Problem
17.4.6 Optional team case project
17.4.6.1 Problem
References
18 Introduction to energy management in smart grids
18.1 Introduction
18.2 Elements of the smart grid
18.3 Energy management
18.3.1 Base line of energy assessment
18.3.2 Organizational integration
18.4 Energy management in operational functions
18.5 Energy management challenges
18.5.1 Energy strategies
18.5.2 Energy strategies of companies
18.5.3 Political energy strategies
18.5.4 Ethical and normative basis of the energy strategies
18.6 Energy management standards
18.7 Summary
18.8 Chapter review questions/exercises
18.8.1 True/false
18.8.2 Multiple choice
18.8.3 Exercise
18.8.3.1 Problem
18.8.4 Hands-on projects
18.8.4.1 Project
18.8.5 Case projects
18.8.5.1 Problem
18.8.6 Optional team case project
18.8.6.1 Problem
References
19 DER, energy management, and transactive energy networks for smart cities
19.1 Introduction
19.2 TEN for smart cities—stakeholders, market forces, and technologies
19.2.1 Customers and stakeholders
19.2.2 Digitization and smart systems
19.2.3 Markets and operators
19.2.4 Transactive energy networks
19.3 DER: distributed energy resources
19.4 Evolution of key subsystems for transactive energy
19.4.1 Building management systems
19.4.2 Grid interactive BMS/BEMS
19.4.3 Levels of operation
19.5 Digital systems and components—10 enablers
19.5.1 IoT and sensors
19.5.2 IoT for home and building automation
19.5.3 IoT for energy
19.5.4 IoT Communication Technologies for TEN
19.5.4.1 Bluetooth
19.5.4.2 Zigbee
19.5.4.3 LoRa and LoRaWAN
19.5.4.4 Cellular networks 5G/4G/3G
19.5.5 Cloud systems
19.5.6 Cyber security and federation
19.5.7 Big data, analytics
19.5.7.1 Distributed centralized AI and ML and blockchain
19.5.8 Interoperability and standards
19.6 Smart TE microgrids
19.7 Markets and operators (short and long term)
19.8 Transactive energy strategy and challenges
19.8.1 Challenges
19.9 Summary
19.10 Chapter review questions/exercises
19.10.1 True/false
19.10.2 Multiple choice
19.10.3 Exercise
19.10.3.1 Problem
19.10.4 Hands-on projects
19.10.4.1 Project
19.10.5 Case projects
19.10.5.1 Problem
19.10.6 Optional team case project
19.10.6.1 Problem
References
20 Managing the generation and demand inside the smart-grid structure
20.1 Introduction
20.1.1 Importance of energy management
20.2 Energy management techniques in smart grid
20.2.1 ZigBee network interfaced with field programmable gate array
20.2.2 Global system for mobile communication
20.2.3 Supervisory control and data acquisition
20.2.4 Remote energy management system using smart meter
20.3 Smart energy management system
20.3.1 Supplier-side management
20.3.2 Demand response
20.3.3 Demand-side management
20.3.4 Peak clipping
20.3.5 Valley filling
20.3.6 Load shifting
20.3.7 Strategic conservation
20.3.8 Strategic load growth
20.3.9 Flexible load shape
20.4 Summary
20.5 Chapter review questions/exercises
20.5.1 True/false
20.5.2 Multiple choice
20.5.3 Exercise
20.5.3.1 Problem
20.5.4 Hands-on projects
20.5.4.1 Project
20.5.5 Case projects
20.5.5.1 Problem
20.5.6 Optional team case project
20.5.6.1 Problem
References
21 Introduction to energy management in smart grids
21.1 Introduction
21.2 Energy management system: the optimization procedure XEMS13
21.2.1 Components
21.2.2 Energy vector balance equations
21.2.3 Cost function
21.2.4 Optimization
21.3 Case study
21.3.1 Optimal scheduling
21.3.2 Hourly load profiles
21.3.3 Energy prices
21.3.4 Proposed configurations
21.3.5 Scenario 1: adding a local boiler
21.3.6 Scenario 2: further addition of a CHP, absorption chiller, and storage
21.3.7 Scenario 3: further addition of solar heating
21.3.8 Scenario 4: further addition of heat pump
21.3.9 Results
21.4 Summary
21.5 Chapter review questions/exercises
21.5.1 True/false
21.5.2 Multiple choice
21.5.3 Exercise
21.5.3.1 Problem
21.5.4 Hands-on projects
21.5.4.1 Project
21.5.5 Case projects
21.5.5.1 Problem
21.5.6 Optional team case project
21.5.6.1 Problem
References
22 Hybrid renewable energy systems, load and generation forecasting, new grids structure, and smart technologies
22.1 Introduction
22.1.1 Smart grid: smart technologies and new grids structures
22.1.2 Load and generation forecasting
22.2 Summary
22.3 Conclusions
22.4 Chapter review questions/exercises
22.4.1 True/false
22.4.2 Multiple choice
22.4.3 Exercise
22.4.3.1 Problem
22.4.4 Hands-on projects
22.4.4.1 Project
22.4.5 Case projects
22.4.5.1 Problem
22.4.6 Optional team case project
22.4.6.1 Problem
References
23 Smart lighting for smart cities
23.1 Introduction
23.2 Smart lighting basics
23.2.1 Luminaires
23.2.2 LEDs
23.2.3 Controls
23.2.4 Drivers and dimming
23.2.5 Networks
23.2.6 Interface and controller
23.2.7 Control methodologies
23.3 More advanced concepts
23.3.1 Ubiquitous network and infrastructure
23.3.2 Color
23.4 Smart lighting example
23.4.1 On-demand roadway lighting
23.4.1.1 General architecture
23.4.1.2 Results and lessons learned
23.5 Potential challenges
23.6 Summary
23.7 Chapter review questions/exercises
23.7.1 True/false
23.7.2 Multiple choice
23.7.3 Exercise
23.7.3.1 Problem
23.7.4 Hands-on projects
23.7.4.1 Project
23.7.5 Case projects
23.7.5.1 Problem
23.7.6 Optional team case project
23.7.6.1 Problem
References
24 Smart cities critical infrastructure recommendations and solutions
24.1 Introduction
24.2 Critical city infrastructures
24.2.1 Overview
24.2.2 Identifying critical infrastructures
24.2.3 Protection of critical infrastructures
24.3 Communications
24.3.1 Overview
24.3.2 Channels used for communications
24.3.2.1 The flexibility of communication systems
24.3.3 Safety and security of communication systems
24.3.4 Recommendations and solutions
24.4 Energy (electricity, gas, and oil)
24.4.1 Overview
24.4.2 Smart grid infrastructure
24.4.3 Smart grid system usage in the world
24.4.4 Microgrids
24.4.5 Natural gas
24.4.6 Renewable energy resources
24.4.7 Recommendations and solutions
24.4.7.1 Advanced heating, ventilation, and air-conditioning systems
24.4.7.2 District heating and cooling
24.4.7.3 Sector coupling
24.5 Water
24.5.1 Overview
24.5.2 Infrastructures for water systems
24.5.2.1 Leakage detection and control
24.5.2.2 Water efficiency via smart metering
24.5.2.3 Water quality monitoring
24.5.3 Recommendations and solutions
24.6 Public transportation
24.6.1 Overview
24.6.2 Integration via information and communication technology applications
24.6.2.1 Electrification of motorized public transportation
24.6.2.2 Integration of parking and public transportation system
24.6.3 Recommendations and solutions
24.7 Emergency services
24.7.1 Overview
24.7.2 Fire detection and prevention
24.7.3 First-aid alerts
24.7.4 Emergency response optimization
24.7.5 Recommendations and solutions
24.7.5.1 Crime prediction
24.7.5.2 Smart surveillance
24.7.5.3 Disaster early warning systems
24.8 Summary
24.9 Chapter review questions/exercises
24.9.1 True/false
24.9.2 Multiple choice
24.9.3 Exercise
24.9.3.1 Problem
24.9.4 Hands-on projects
24.9.4.1 Project
24.9.5 Case projects
24.9.4.1 Problem
24.9.6 Optional team case project
24.9.6.1 Problem
References
25 The city as a commons: the concept of common goods
25.1 Introduction
25.2 Defining the topic
25.3 The commons and the OECD
25.4 The commons and the European Union
25.5 Coproduction and the European Social Fund
25.6 The Bologna regulation on public collaboration for urban commons: theoretical basis
25.7 Italy and the commons
25.8 The Bologna regulation on public collaboration for urban commons
25.9 From the commons to the city as a commons
25.10 The cocity index
25.11 Urban innovative action in the city of Turin
25.12 The city of Verona and subsidiarity pacts with active citizens
25.13 The commons and civic crowdfunding
25.14 Best Italian practices in matching public funds with private ones: the city of Milan and Turin
25.15 The role of institutions in promoting civic crowdfunding
25.16 Summary
25.17 Chapter review questions/exercises
25.17.1 True/false
25.17.2 Multiple choice
25.17.3 Exercise
25.17.3.1 Problem
25.17.4 Hands-on projects
25.17.4.1 Project
25.17.5 Case projects
25.17.5.1 Problem
25.17.6 Optional team case project
25.17.6.1 Problem
References
26 Resilient future energy systems: smart grids, vehicle-to-grid, and microgrids
26.1 Introduction
26.1.1 The changing face of energy networks
26.1.1.1 Control-oriented stochastic modeling
26.1.2 Model predictive operation control
26.1.3 Flexible future smart-grid systems
26.2 Optimization of urban electric grids with EV charging load and V2G generation
26.2.1 Statement of the optimization problem
26.2.2 Lower level of optimization
26.2.3 High-level model description
26.2.4 Minimization of losses in the electric grid
26.2.5 Minimization of voltage deviations
26.2.6 Reducing environmental impact
26.2.7 Probabilistic statement of the problem
26.2.8 Dynamic optimization
26.3 Resilient operational control of microgrids
26.3.1 Risk-averse multistage optimization and risk-averse MPC
26.3.2 Numerical optimization methods for multistage optimization
26.4 Smart grids and digital twins
26.5 Summary
26.6 Chapter review questions/exercises
26.6.1 True/false
26.6.2 Multiple choice
26.6.3 Exercise
26.6.3.1 Problem
26.6.4 Hands-on projects
26.6.4.1 Project
26.6.5 Case projects
26.6.5.1 Problem
26.6.6 Optional team case project
26.6.6.1 Problem
References
27 Future of connected autonomous vehicles in smart cities
27.1 Introduction
27.2 Components of smart city
27.3 Connected and autonomous vehicle functional architecture
27.3.1 Localization
27.3.2 Perception
27.3.3 Path planning
27.3.4 Control
27.4 CAV and smart mobility
27.5 CAV and smart energy
27.6 CAV and smart home
27.7 CAV and smart health
27.8 CAV testing and verification platform
27.9 Summary
27.10 Chapter review questions/exercises
27.10.1 True/false
27.10.2 Multiple choice
27.10.3 Exercise
27.10.3.1 Problem
27.10.4 Hands-on projects
27.10.4.1 Project
27.10.5 Case projects
27.10.5.1 Problem
27.10.6 Optional team case project
27.10.6.1 Problem
References
28 Future developments in vehicle-to-grid technologies
28.1 Introduction
28.2 Smart grid
28.3 Vehicle to grid
28.3.1 Architecture
28.3.2 Advantages
28.4 State-of-the-art of the V2G
28.4.1 Classification
28.4.2 Bidirectional charger
28.4.3 Voltage source rectifier
28.4.4 DC–DC converter
28.4.5 Charger control method
28.5 Charging/discharging strategy
28.5.1 Grid view
28.5.2 User view
28.5.3 Time-of-use electricity price
28.5.4 Traditional TOU
28.5.5 Game theory TOU
28.6 Summary
28.7 Chapter review questions/exercises
28.7.1 True/false
28.7.2 Multiple choice
28.7.3 Exercise
28.7.3.1 Problem
28.7.4 Hands-on projects
28.7.4.1 Project
28.7.5 Case projects
28.7.5.1 Problem
28.7.6 Optional team case project
28.7.6.1 Problem
References
29 Designing inclusive smart cities of the future: the Indian context
29.1 Introduction
29.1.1 Need for the study: the Indian context
29.1.2 Flow of the chapter
29.2 Review of literature
29.3 Learning from existing global implementations
29.3.1 Seattle, USA
29.3.2 Alexandria, USA
29.3.3 European Union—City4Age
29.3.4 Sonoma, USA
29.3.5 Korsør, Denmark
29.3.6 Melbourne, Australia
29.3.7 Global Initiative for Inclusive ICTs
29.4 Understanding Indian context
29.4.1 Existing smart India initiatives
29.5 Proposed conceptual model of an inclusive smart city
29.5.1 Implementation of the proposed conceptual model
29.5.2 Data capture block
29.5.3 Data storage block
29.5.4 Data analytics block
29.5.5 Data-based decision block
29.6 Recommendations
29.6.1 Initiatives taken by the Government of India
29.6.2 Study of 3As
29.6.3 Accessibility
29.6.4 Adaptability
29.6.5 Affordability—high Capex and Opex
29.6.6 Objective of inclusive smart cities
29.6.7 Use of real-time apps—SeenAb
29.6.8 Collaboration of Smart-City Mission and Startup India
29.6.9 Smart vans
29.6.10 Visual, hearing, and cognitive ICT-based solutions
29.6.11 Public infrastructure
29.7 Summary
29.8 Chapter review questions/exercises
29.8.1 True/false
29.8.2 Multiple choice
29.8.3 Exercise
29.8.3.1 Problem
29.8.4 Hands-on projects
29.8.4.1 Project
29.8.5 Case projects
29.8.5.1 Problem
29.8.6 Optional team case project
29.8.6.1 Problem
References
Appendix A List of top smart cities and critical infrastructure implementation and deployment companies
Appendix B List of smart cities and critical infrastructure products/projects
Appendix C List of smart cities and critical infrastructure standards
Appendix D List of miscellaneous smart cities and critical infrastructure resources
Appendix E Smart cities and critical infrastructure frequently asked questions
Appendix F List of smart cities and critical infrastructure case studies
Appendix G Answers to review questions/exercises, hands-on projects, case projects, and optimal team case project by chapter
G.1 Chapter 1: Introduction to the critical success factors of e-government adoption of the utilization of emerging smart c...
G.1.1 Review questions/exercises
G.1.1.1 True/false
G.1.1.2 Multiple choice
G.1.1.3 Exercise
G.1.1.3.1 Solution
G.1.1.4 Hands-on project
G.1.1.4.1 Solution
G.1.1.5 Case projects
G.1.1.5.1 Solution
G.1.1.6 Optional team case project
G.1.1.6.1 Solution
G.2 Chapter 2: Smart-city infrastructure components
G.2.1 Review questions/exercises
G.2.1.1 True/false
G.2.1.2 Multiple choice
G.2.1.3 Exercise
G.2.1.3.1 Solution
G.2.1.4 Hands-on project
G.2.1.4.1 Solution
G.2.1.5 Case projects
G.2.1.5.1 Solution
G.2.1.6 Optional team case project
G.2.1.6.1 Solution
G.3 Chapter 3: Smart buildings and urban spaces
G.3.1 Review questions/exercises
G.3.1.1 True/false
G.3.1.2 Multiple choice
G.3.1.3 Exercise
G.3.1.3.1 Solution
G.3.1.4 Hands-on project
G.3.1.4.1 Solution
G.3.1.5 Case projects
G.3.1.5.1 Solution
G.3.1.6 Optional team case project
G.3.1.6.1 Solution
G.4 Chapter 4: Urban mobility systems components
G.4.1 Review questions/exercises
G.4.1.1 True/false
G.4.1.2 Multiple choice
G.4.1.3 Exercise
G.4.1.3.1 Solution
G.4.1.4 Hands-on project
G.4.1.4.1 Solution
G.4.1.5 Case projects
G.4.1.5.1 Solution
G.4.1.6 Optional team case project
G.4.1.6.1 Solution
G.5 Chapter 5: Coupling of the mobility and energy infrastructures as urban mobility needs evolve
G.5.1 Review questions/exercises
G.5.1.1 True/false
G.5.1.2 Multiple choice
G.5.1.3 Exercise
G.5.1.3.1 Solution
G.5.1.4 Hands-on project
G.5.1.4.1 Solution
G.5.1.5 Case projects
G.5.1.5.1 Solution
G.5.1.6 Optional team case project
G.5.1.6.1 Solution
G.6 Chapter 6: Urban mobility system components
G.6.1 Review questions/exercises
G.6.1.1 True/false
G.6.1.2 Multiple choice
G.6.1.3 Exercise
G.6.1.3.1 Solution
G.6.1.4 Hands-on project
G.6.1.4.1 Solution
G.6.1.5 Case projects
G.6.1.5.1 Solution
G.6.1.6 Optional team case project
G.6.1.6.1 Solution
G.7 Chapter 7: Urbanization and smart cities
G.7.1 Review questions/exercises
G.7.1.1 True/false
G.7.1.2 Multiple choice
G.7.1.3 Exercise
G.7.1.3.1 Solution
G.7.1.4 Hands-on project
G.7.1.4.1 Solution
G.7.1.5 Case projects
G.7.1.5.1 Solution
G.7.1.6 Optional team case project
G.7.1.6.1 Solution
G.8 Chapter 8: Priority activities for smart cities and the infrastructure
G.8.1 Review questions/exercises
G.8.1.1 True/false
G.8.1.2 Multiple choice
G.8.1.3 Exercise
G.8.1.3.1 Solution
G.8.1.4 Hands-on project
G.8.1.4.1 Solution
G.8.1.5 Case projects
G.8.1.5.1 Solution
G.8.1.6 Optional team case project
G.8.1.6.1 Solution
G.9 Chapter 9: Open data for smart cities
G.9.1 Review questions/exercises
G.9.1.1 True/false
G.9.1.2 Multiple choice
G.9.1.3 Exercise
G.9.1.3.1 Solution
G.9.1.4 Hands-on project
G.9.1.4.1 Solution
G.9.1.5 Case projects
G.9.1.5.1 Solution
G.9.1.6 Optional team case project
G.9.1.6.1 Solution
G.10 Chapter 10: The role of citizens in smart cities and urban infrastructures
G.10.1 Review questions/exercises
G.10.1.1 True/false
G.10.1.2 Multiple choice
G.10.1.3 Exercise
G.10.1.3.1 Solution
G.10.1.4 Hands-on project
G.10.1.4.1 Solution
G.10.1.5 Case projects
G.10.1.5.1 Solution
G.10.1.6 Optional team case project
G.10.1.6.1 Solution
G.11 Chapter 11: Smart city and metropolitan governance
G.11.1 Review questions/exercises
G.11.1.1 True/false
G.11.1.2 Multiple choice
G.11.1.3 Exercise
G.11.1.3.1 Solution
G.11.1.4 Hands-on project
G.11.1.4.1 Solution
G.11.1.5 Case projects
G.11.1.5.1 Solution
G.11.1.6 Optional team case project
G.11.1.6.1 Solution
G.12 Chapter 12: Distributed energy in smart cities and the infrastructure
G.12.1 Review questions/exercises
G.12.1.1 True/false
G.12.1.2 Multiple choice
G.12.1.3 Exercise
G.12.1.3.1 Solution
G.12.1.4 Hands-on project
G.12.1.4.1 Solution
G.12.1.5 Case projects
G.12.1.5.1 Solution
G.12.1.6 Optional team case project
G.12.1.6.1 Solution
G.13 Chapter 13: Energy efficient automated warehouse design
G.13.1 Review questions/exercises
G.13.1.1 True/false
G.13.1.2 Multiple choice
G.13.1.3 Exercise
G.13.1.3.1 Solution
G.13.1.4 Hands-on project
G.13.1.4.1 Solution
G.13.1.5 Case projects
G.13.1.5.1 Solution
G.13.1.6 Optional team case project
G.13.1.6.1 Solution
G.14 Chapter 14: Smart utilities
G.14.1 Review questions/exercises
G.14.1.1 True/false
G.14.1.2 Multiple choice
G.14.1.3 Exercise
G.14.1.3.1 Solution
G.14.1.4 Hands-on project
G.14.1.4.1 Solution
G.14.1.5 Case projects
G.14.1.5.1 Solution
G.14.1.6 Optional team case project
G.14.1.6.1 Solution
G.15 Chapter 15: Smart cities and infrastructure standardization requirements
G.15.1 Review questions/exercises
G.15.1.1 True/false
G.15.1.2 Multiple choice
G.15.1.3 Exercise
G.15.1.3.1 Solution
G.15.1.4 Hands-on project
G.15.1.4.1 Solution
G.15.1.5 Case projects
G.15.1.5.1 Solution
G.15.1.6 Optional team case project
G.15.1.6.1 Solution
G.16 Chapter 16: Securing smart-grid infrastructure against emerging threats
G.16.1 Review questions/exercises
G.16.1.1 True/false
G.16.1.2 Multiple choice
G.16.1.3 Exercise
G.16.1.3.1 Solution
G.16.1.4 Hands-on Project
G.16.1.4.1 Solution
G.16.1.5 Case projects
G.16.1.5.1 Solution
G.16.1.6 Optional team case project
G.16.1.6.1 Solution
G.17 Chapter 17: Components of the smart-grid system
G.17.1 Review questions/exercises
G.17.1.1 True/false
G.17.1.2 Multiple choice
G.17.1.3 Exercise
G.17.1.3.1 Solution
G.17.1.4 Hands-on project
G.17.1.4.1 Solution
G.17.1.5 Case projects
G.17.1.5.1 Solution
G.17.1.6 Optional team case project
G.17.1.6.1 Solution
G.18 Chapter 18: Introduction to energy management in smart grids
G.18.1 Review questions/exercises
G.18.1.1 True/false
G.18.1.2 Multiple choice
G.18.1.3 Exercise
G.18.1.3.1 Solution
G.18.1.4 Hands-on project
G.18.1.4.1 Solution
G.18.1.5 Case projects
G.18.1.5.1 Solution
G.18.1.6 Optional team case project
G.18.1.6.1 Solution
G.19 Chapter 19: DER, energy management, and transactive energy networks for smart cities
G.19.1 Review questions/exercises
G.19.1.1 True/false
G.19.1.2 Multiple choice
G.19.1.3 Exercise
G.19.1.3.1 Solution
G.19.1.4 Hands-on project
G.19.1.4.1 Solution
G.19.1.5 Case projects
G.19.1.5.1 Solution
G.19.1.6 Optional team case project
G.19.1.6.1 Solution
G.20 Chapter 20: Managing the generation and demand inside the smart-grid structure
G.20.1 Review questions/exercises
G.20.1.1 True/false
G.20.1.2 Multiple choice
G.20.1.3 Exercise
G.20.1.3.1 Solution
G.20.1.4 Hands-on project
G.20.1.4.1 Solution
G.20.1.5 Case projects
G.20.1.5.1 Solution
G.20.1.6 Optional team case project
G.20.1.6.1 Solution
G.21 Chapter 21: Energy management of multienergy and hybrid energy networks in smart grids
G.21.1 Review questions/exercises
G.21.1.1 True/false
G.21.1.2 Multiple choice
G.21.1.3 Exercise
G.21.1.3.1 Solution
G.21.1.4 Hands-on project
G.21.1.4.1 Solution
G.21.1.5 Case projects
G.21.1.5.1 Solution
G.21.1.6 Optional team case project
G.21.1.6.1 Solution
G.22 Chapter 22: Hybrid renewable energy systems, load, and generation forecasting, new grids structure and smart technologies
G.22.1 Review questions/exercises
G.22.1.1 True/false
G.22.1.2 Multiple choice
G.22.1.3 Exercise
G.22.1.3.1 Solution
G.22.1.4 Hands-on project
G.22.1.4.1 Solution
G.22.1.5 Case projects
G.22.1.5.1 Solution
G.22.1.6 Optional team case project
G.22.1.6.1 Solution
G.23 Chapter 23: Smart lighting for smart cities
G.23.1 Review questions/exercises
G.23.1.1 True/false
G.23.1.2 Multiple choice
G.23.1.3 Exercise
G.23.1.3.1 Solution
G.23.1.4 Hands-on project
G.23.1.4.1 Solution
G.23.1.5 Case projects
G.23.1.5.1 Solution
G.23.1.6 Optional team case project
G.23.1.6.1 Solution
G.24 Chapter 24: Smart cities critical infrastructure recommendations and solutions
G.24.1 Review questions/exercises
G.24.1.1 True/false
G.24.1.2 Multiple choice
G.24.1.3 Exercise
G.24.1.3.1 Solution
G.24.1.4 Hands-on project
G.24.1.4.1 Solution
G.24.1.5 Case projects
G.24.1.5.1 Solution
G.24.1.6 Optional team case project
G.24.1.6.1 Solution
G.25 Chapter 25: The city as a commons: the concept of common goods
G.25.1 Review questions/exercises
G.25.1.1 True/false
G.25.1.2 Multiple choice
G.25.1.3 Exercise
G.25.1.3.1 Solution
G.25.1.4 Hands-on project
G.25.1.4.1 Solution
G.25.1.5 Case projects
G.25.1.5.1 Solution
G.25.1.6 Optional team case project
G.25.1.6.1 Solution
G.26 Chapter 26: Resilient future energy systems: smart grids, vehicle-to-grid, and microgrids
G.26.1 Review questions/exercises
G.26.1.1 True/false
G.26.1.2 Multiple choice
G.26.1.3 Exercise
G.26.1.3.1 Solution
G.26.1.4 Hands-on project
G.26.1.4.1 Solution
G.26.1.5 Case projects
G.26.1.5.1 Solution
G.26.1.6 Optional team case project
G.26.1.6.1 Solution
G.27 Chapter 27: Connected autonomous vehicles in smart cities
G.27.1 Review questions/exercises
G.27.1.1 True/false
G.27.1.2 Multiple choice
G.27.1.3 Exercise
G.27.1.3.1 Solution
G.27.1.4 Hands-on project
G.27.1.4.1 Solution
G.27.1.5 Case projects
G.27.1.5.1 Solution
G.27.1.6 Optional team case project
G.27.1.6.1 Solution
G.28 Chapter 28: Future developments in vehicle-to-grid (V2G) technologies
G.28.1 Review questions/exercises
G.28.1.1 True/false
G.28.1.2 Multiple choice
G.28.1.3 Exercise
G.28.1.3.1 Solution
G.28.1.4 Hands-on project
G.28.1.4.1 Solution
G.28.1.5 Case projects
G.28.1.5.1 Solution
G.28.1.6 Optional team case project
G.28.1.6.1 Solution
G.29 Chapter 29: Designing inclusive smart cities of the future: the Indian context
G.29.1 Review questions/exercises
G.29.1.1 True/false
G.29.1.2 Multiple choice
G.29.1.3 Exercise
G.29.1.3.1 Solution
G.29.1.4 Hands-on project
G.29.1.4.1 Solution
G.29.1.5 Case projects
G.29.1.5.1 Solution
G.29.1.6 Optional team case project
G.29.1.6.1 Solution
Appendix H Glossary
Index
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Solving Urban Infrastructure Problems Using Smart City Technologies is the most complete guide for integrating next generation smart city technologies into the very foundation of urban areas worldwide, showing how to make urban areas more efficient, more sustainable, and safer. Smart cities are complex systems of systems that encompass all aspects of modern urban life. A key component of their success is creating an ecosystem of smart infrastructures that can work together to enable dynamic, real-time interactions between urban subsystems such as transportation, energy, healthcare, housing, food, entertainment, work, social interactions, and governance. Solving Urban Infrastructure Problems Using Smart City Technologies is a complete reference for building a holistic, system-level perspective on smart and sustainable cities, leveraging big data analytics and strategies for planning, zoning, and public policy. It offers in-depth coverage and practical solutions for how smart cities can utilize resident’s intellectual and social capital, press environmental sustainability, increase personalization, mobility, and higher quality of life.