توضیحاتی در مورد کتاب Spectrum Sensing for Cognitive Radio: Fundamentals and Applications
نام کتاب : Spectrum Sensing for Cognitive Radio: Fundamentals and Applications
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : سنجش طیف برای رادیو شناختی: مبانی و کاربردها
سری :
نویسندگان : Kamal M. Captain, Manjunath V. Joshi
ناشر : CRC Press
سال نشر : 2021
تعداد صفحات : 256
ISBN (شابک) : 0367542935 , 9780367542931
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این متن مرجع جامع مفاهیم رادیوی شناختی و پیشرفتها در زمینه سنجش طیف را مورد بحث قرار میدهد.
این متن روشهایی را برای عدم اختلاط یا تجزیه دادههای فراطیفی به اجزای سازنده آن مورد بحث قرار میدهد. موجودیت ها را تشکیل می دهد و یک چارچوب یکپارچه برای اختلاط کامل طیفی داده ها فراهم می کند. این موضوع موضوعات مهمی از جمله سنجش طیف باند باریک، سنجش طیف گسترده، سنجش طیف مشارکتی، مدل سیستم و کانال، الگوریتمهای تشخیص، تقریب آمار تصمیمگیری و تجزیه و تحلیل نظری الگوریتمهای تشخیص را پوشش میدهد. فصل جداگانه ای استفاده از الگوریتم تشخیص برای سنجش طیف گسترده باند مشارکتی را مورد بحث قرار می دهد.
با هدف دانشجویان تحصیلات تکمیلی و محققان دانشگاهی در زمینه مهندسی برق، الکترونیک و مهندسی ارتباطات و سنجش از دور، این متن:
- درباره مفاهیم رادیو شناختی و تحقیق در سنجش طیف بحث میکند.
< li>تحلیل ریاضی الگوریتمها را با در نظر گرفتن محیط عملی ارائه میکند.
- الگوریتمهای جدید سنجش طیف باند پهن را با تجزیه و تحلیل دقیق توضیح میدهد.
< /p>
- مشتقات ریاضی را برای کمک به خوانندگان ارائه می دهد.
- درباره الگوریتم سنجش طیف پایه برای سنجش طیف باند باریک بحث می کند. به سنجش پیشرفتهتر طیف باند پهن.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Preface
Contributor
List of Figures
List of Tables
Acronyms
Acknowledgments
Chapter 1: Fundamentals of Probability Theory
1.1. Introduction
1.2. Basics of Probability
1.2.1. Probability of an Event
1.2.1.1. Axiomatic Definition
1.2.1.2. Relative Frequency Definition
1.2.1.3. Classical Definition
1.2.2. Conditional Probability
1.2.3. Independence of Events
1.3. Random Variable
1.3.1. Cumulative Distribution Function (CDF)
1.3.1.1. Properties of Cumulative Distribution Function
1.3.2. The Probability Density Function (PDF)
1.3.2.1. Properties of Probability Density Functions
1.3.3. Joint Distribution and Density Function
1.3.4. Conditional Probability Density Function
1.3.5. Statistical Independence
1.3.6. Moments of a Random Variable
1.3.7. Some Key Random Variables
1.3.7.1. Discrete Random Variables
1.3.7.2. Continuous Random Variables
1.3.8. The Markov and Chebyschev Inequalities
1.3.9. The Sample Mean and the Laws of Large Numbers
1.3.9.1. Weak Law of Large Numbers
1.3.9.2. Strong Law of Large Numbers
1.3.10. Central Limit Theorem (CLT)
1.4. Stochastic Process
1.4.1. Definition of Stochastic Process
1.4.2. Statistics of Stochastic Process
1.4.3. Stationarity
1.4.3.1. Properties of Autocorrelation Function
1.4.4. Random Process through Linear System
1.4.5. Power Spectral Density (PSD)
1.4.5.1. Properties of Power Spectral Density
1.4.5.2. Output Spectral Density of an LTI System
1.4.6. Gaussian Random Process
1.4.7. White Noise
Chapter 2: Introduction
2.1. Cognitive Radio
2.2. Spectrum Sensing
2.2.1. Narrowband Spectrum Sensing
2.2.1.1. Matched Filter Detection
2.2.1.2. Cyclostationary Detection
2.2.1.3. Covariance-Based Detection
2.2.1.4. Eigenvalue-Based Detection
2.2.1.5. Energy Detection
2.2.2. Wideband Spectrum Sensing
2.2.2.1. Nyquist Wideband Spectrum Sensing
2.2.2.2. Sub-Nyquist Wideband Spectrum Sensing
2.2.3. Cooperative Spectrum Sensing
2.2.4. Machine-Learning-Based Spectrum Sensing
2.3. Book Contributions
2.4. Tour of the Book
Chapter 3: Literature Review
3.1. Narrowband Spectrum Sensing
3.2. Wideband Spectrum Sensing
3.3. Cooperative Spectrum Sensing
3.4. Machine-Learning-Based Spectrum Sensing
PART I: Narrowband Spectrum Sensing
Chapter 4: Energy-Detection-Based Spectrum Sensing over Generalized Fading Model
4.1. System and Channel Models
4.1.1. Energy Detection (ED)
4.1.2. ƞ-λ-µ Fading Model
4.2. Average Probability of Detection over ƞ-λ-µ Fading Channel
4.2.1. No Diversity
4.2.2. Square Law Selection (SLS) Diversity
4.2.3. Cooperative Spectrum Sensing
4.3. Average Probability of Detection over Channels with ƞ-λ-µ Fading and Shadowing
4.4. Results and Discussion
4.5. Conclusion
Chapter 5: Generalized Energy Detector in the Presence of Noise Uncertainty and Fading
5.1. System Model
5.2. Noise Uncertainty Model
5.3. SNR Wall for AWGN Channel
5.3.1. No Diversity
5.3.2. pLC Diversity
5.3.3. pLS Diversity
5.3.4. CSS with Hard Combining
5.3.4.1. OR Rule
5.3.4.2. AND Rule
5.3.4.3. k Out of M Combining Rule
5.3.5. CSS with Soft Combining
5.4. SNR Wall for Fading Channel
5.4.1. No Diversity
5.4.2. pLC Diversity
5.4.3. pLS Diversity
5.4.4. CSS with Hard Combining
5.4.4.1. OR Combining
5.4.4.2. AND Combining
5.4.5. CSS with Soft Combining
5.5. Results and Discussion
5.5.1. SNR Wall for AWGN Case
5.5.2. SNR Wall for Fading Case
5.5.3. Effect of Noise Uncertainty and Fading on Detection Performance
5.5.4. Effect of p
5.6. Conclusion
PART II: Wideband Spectrum Sensing
Chapter 6: Diversity for Wideband Spectrum Sensing under Fading
6.1. System Model and Performance Metrics
6.2. Detection Algorithms
6.2.1. Channel-by-Channel Square Law Combining (CC-SLC)
6.2.2. Ranked Square Law Combining (R-SLC) Detection
6.2.3. Ranked Square Law Selection (R-SLS) Detection
6.3. Approximation of Decision Statistic
6.3.1. PDF for SLC Diversity
6.3.1.1. Without Using Approximation
6.3.1.2. Using Approximation
6.3.1.2. Using Approximation
6.3.2.1. Without Using Approximation
6.3.2.2. Using Approximation
6.4. Theoretical Analysis of Detection Algorithms
6.4.1. Channel-by-Channel Square Law Combining (CC-SLC)
6.4.2. Theoretical Analysis for R-SLC
6.4.3. Theoretical Analysis of R-SLS
6.5. Results and Discussion
6.6. Conclusion
Chapter 7: Cooperative Wideband Spectrum Sensing
7.1. System Model and Performance Metrics
7.2. Proposed CWSS Algorithms
7.2.1. Proposed Algorithm Based on Hard Combining
7.2.2. Proposed Algorithm Based on Soft Combining
7.3. Approximation to pdf of Decision Statistic
7.4. Theoretical Analysis of the Detection Algorithms
7.4.1. Theoretical Analysis for Algorithm 4
7.4.1.1. Performance Using Any Value of M with Fixed L
7.4.1.2. Performance Using Any Value of L with Fixed M
7.4.2. Theoretical Analysis for Algorithm 5
7.5. Results and Discussion
7.5.1. Experimentations Using Algorithm 4
7.5.2. Experimentations Using Algorithm 5
7.6. Conclusion
Chapter 8: Conclusions and Future Research Directions
8.1. Conclusions
8.2. Future Research Directions
Appendix A: Appendix for Chapter 1
A.1. Proof for Markov Inequality
A.2. Proof Central Limit Theorem
A.3. Characteristic Function of Gaussian Random Variable
Appendix B: Appendix for Chapter 4
B.1. Derivation for PF (t) in Eq. (4.3)
Appendix C: Appendix for Chapter 5
C.1. Derivation for ¯PD,plc in Eq. (5.27)
C.2. Derivation for ¯PNak D in Eq. (5.77)
C.3. Derivation for ¯PNak D,plc in Eq. (5.81)
Appendix D: Appendix for Chapter 6
D.1. Proof for Convergence of PDF of SLC under Nakagami Fading Channel in Eq. (6.12)
D.2. Derivation of PDF of SLS under Nakagami Fading in Eq. (6.17)
D.3. Proof for Convergence of PDF of SLS under Nakagami Fading in Eq. (6.17)
D.4. Derivation of PDF in Eq. (6.13)
D.5. Derivation of Eq. (6.34)
D.6. Derivation of PDF in Eq. (6.36)
D.7. Theoretical Analysis of R-SLC for L = 3
Appendix E: Some Special Functions
E.1. Gamma Function
E.2. Lower Incomplete Gamma Function
E.3. Upper Incomplete Gamma Function
E.4. Generalized Marcum Q-Function
E.5. Bessel Function of the First Kind
E.6. Modified Bessel Function of the First Kind
E.7. Confluent Hypergeometric Function
E.8. Confluent Hypergeometric Function of the Second Kind
E.9. Unit Step Function
E.10. Q-Function
E.11. Error Function
E.12. Polylogarithm
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This comprehensive reference text discusses concepts of cognitive radio and the advances in the field of spectrum sensing.
The text discusses methodologies for unmixing or decomposing the hyperspectral data into its constituent entities and provides a unified framework for the complete spectral unmixing of the data. It covers important topics including narrowband spectrum sensing, wideband spectrum sensing, cooperative spectrum sensing, system and channel model, detection algorithms, approximation of decision statistics and theoretical analysis of detection algorithms in detail. A separate chapter discusses use of detection algorithm for cooperative wideband spectrum sensing.
Aimed at graduate students and academic researchers in the field of electrical engineering, electronics and communication engineering and remote sensing, this text:
- Discusses concepts of cognitive radio and research in spectrum sensing.
- Presents mathematical analysis of algorithms considering practical environment.
- Explains novel wideband spectrum sensing algorithms with detailed analysis.
- Provides mathematical derivations to help readers.
- Discusses basic spectrum sensing algorithm for narrowband spectrum sensing to the more advanced wideband spectrum sensing.