توضیحاتی در مورد کتاب :
مفاهیم اساسی انتقال فاز، مانند پارامترهای نظم، شکست تقارن خود به خود، تبدیل های مقیاس بندی، تقارن منسجم و ابعاد غیرعادی، دید مدرن بسیاری از حوزه های فیزیک را عمیقاً تغییر داده و منجر به پیشرفت های قابل توجهی در مکانیک آماری، نظریه ذرات بنیادی، ماده متراکم شده است. فیزیک و نظریه ریسمان این کتاب مستقل، مقدمهای کامل بر دنیای جذاب انتقال فاز و موضوعات مرزی مدلهای دقیقاً حلشده در مکانیک آماری و نظریه میدان کوانتومی، مانند گروههای عادیسازی مجدد، مدلهای منسجم، سیستمهای انتگرالپذیر کوانتومی، دوگانگی، ماتریسهای S الاستیک، ترمودینامیکی Bethe ansatz و نظریه عامل شکل. بحث روشن از اصول فیزیکی همراه با تجزیه و تحلیل دقیق چندین شاخه از ریاضیات است که به دلیل ظرافت و زیبایی آنها متمایز شده اند، از جمله جبرهای ابعادی نامتناهی، نگاشتهای منسجم، معادلات انتگرال و توابع مدولار.
علاوه بر موضوعات تحقیقاتی پیشرفته، این کتاب همچنین بسیاری از موضوعات اساسی در مکانیک آماری، نظریه میدان کوانتومی و فیزیک نظری را پوشش میدهد. هر استدلال با جزئیات بسیار مورد بحث قرار می گیرد و درک منسجم کلی از پدیده های فیزیکی ارائه می شود. در صورت لزوم، پیشینه ریاضی به صورت مکمل در انتهای هر فصل در دسترس است. فصل ها شامل مسائل در سطوح مختلف دشواری است. دانشجویان پیشرفته کارشناسی و کارشناسی ارشد این کتاب را منبعی غنی و چالش برانگیز برای بهبود مهارت های خود و برای دستیابی به درک جامع از بسیاری از جنبه های موضوع می دانند.
فهرست مطالب :
Cover
Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics
Copyright
Preface to the first edition
Preface to the second edition
Structure of the book
Acknowledgements
Contents
Part 1: Preliminary Notions
Chapter 1: Introduction
1.1 Phase Transitions
1.1.1 Competitive Principles
1.1.2 Partition Function
1.1.3 Order Parameters
1.1.4 Correlation Functions
1.1.5 Critical Exponents
1.1.6 Scaling Laws
1.1.7 Dimensionality of Space and Order Parameters
1.2 The Ising Model
1.3 Ernst Ising
Appendix 1.A. Ensembles in Classical Statistical Mechanics
Appendix 1.B. Ensembles in Quantum Statistical Mechanics
References
Problems
Chapter 2: One-dimensional Systems
2.1 Recursive Approach
2.2 Transfer Matrix
2.2.1 Periodic Boundary Conditions
2.2.2 Other Boundary Conditions: Boundary States
2.3 Series Expansions
2.4 Critical Exponents and Scaling Laws
2.5 The Potts Model
2.6 Models with O(n) Symmetry
2.7 Models with Zn Symmetry
2.8 Feynman Gas
Appendix 2.A. Special Functions
The (z) function
The Bessel functions Iν(x)
The Bessel functions Kν(x)
Appendix 2.B. n-dimensional Solid Angle
Appendix 2.C. The Four-colour Problem
References
Problems
Chapter 3: Approximate Solutions
3.1 Mean Field Theory of the Ising Model
3.2 Mean Field Theory of the Potts Model
3.3 Bethe–Peierls Approximation
3.4 The Gaussian Model
3.5 The spherical model
Appendix 3.A. The Saddle Point Method
Appendix 3.B. Brownian Motion on a Lattice
References
Problems
Part 2: Bi-dimensional Lattice Models
Chapter 4: Duality of the Two-dimensional Ising Model
4.1 Peierls Argument
4.2 Duality Relation in Square Lattices
4.2.1 High Temperature Series Expansion
4.2.2 Low-temperature Series Expansion
4.2.3 Self-duality
4.3 Duality Relation: Hexagonal and Triangular Lattices
4.4 Star-triangle Identity
4.5 Ising Model Critical Temperature: Triangle and Hexagonal Lattices
4.6 Duality in Two Dimensions
4.6.1 Self-duality of the p-state Model
4.6.2 Duality Relation between XY Model and SOS Model
Appendix 4.A. Numerical Series
Appendix 4.B. Poisson Sum Formula
References
Problems
Chapter 5: Combinatorial Solutions of the Ising Model
5.1 Combinatorial Approach
5.1.1 Partition Function
5.1.2 Correlation Function and Magnetization
5.2 Dimer Method
5.2.1 Dimers on a Square Lattice
5.2.2 Dimer Formulation of the Ising Model
References
Problems
Chapter 6: Transfer Matrix of the Two-dimensional Ising Model
6.1 Baxter’s Approach
6.1.1 Commutativity of the Transfer Matrices
6.1.2 Commutativity of the Transfer Matrices: Graphical Proof
6.1.3 Functional Equations and Symmetries
6.1.4 Functional Equations for the Eigenvalues
6.2 Eigenvalue Spectrum at the Critical Point
6.3 Away from the Critical Point
6.4 Yang–Baxter Equation and R-matrix
6.4.1 Six-vertex model
References
Problems
Part 3: Quantum Field Theory and Conformal Invariance
Chapter 7: Quantum Field Theory
7.1 Motivations
7.2 Order Parameters and Lagrangian
7.3 Field Theory of the Ising Model
7.4 Correlation Functions and Propagator
7.5 Perturbation Theory and Feynman diagrams
7.6 Legendre Transformation and Vertex Functions
7.7 Spontaneous Symmetry Breaking and Multi-criticality
7.7.1 Universality Class of the Ising model
7.7.2 Universality Class of the Tricritical Ising Model
7.7.3 Multicritical Points
7.8 Renormalization
7.9 Field Theory in Minkowski Space
7.10 Particles
7.11 Correlation Functions and Scattering Processes
Appendix 7.A. Feynman Path Integral Formulation
Appendix 7.B. Relativistic Invariance
Appendix 7.C. Noether Theorem
References
Problems
Chaoter 8: Renormalization Group
8.1 Introduction
8.2 Reducing the Degrees of Freedom
8.3 Transformation Laws and Effective Hamiltonians
8.4 Fixed Points
8.5 The Ising Model
8.6 The Gaussian Model
8.7 Operators and Quantum Field Theory
8.8 Functional Form of the Free Energy
8.9 Critical Exponents and Universal Ratios
8.10 β-Functions
References
Problems
Chapter 9: Fermionic Formulation of the Ising Model
9.1 Introduction
9.2 Transfer Matrix and Hamiltonian Limit
9.3 Order and Disorder Operators
9.4 Perturbation Theory
9.5 Expectation Values of Order and Disorder Operators
9.6 Diagonalization of the Hamiltonian
9.7 Dirac Equation
References
Problems
Chapter 10: Conformal Field Theory
10.1 Introduction
10.2 The Algebra of Local Fields
10.3 Conformal Invariance
10.3.1 Conformal Transformations in D Dimensions
10.3.2 Polyakov’s Theorem
10.4 Quasi-primary Fields
10.5 Two-dimensional Conformal Transformations
10.6 Ward Identity and Primary Fields
10.7 Central Charge and Virasoro Algebra
10.7.1 Example 1. Free Neutral Fermion
10.7.2 Example 2. Free Bosonic Field
10.8 Representation Theory
10.8.1 Representation Theory: the Space of the Conformal States
10.8.2 Representation Theory: The Space of Conformal Fields
10.9 Hamiltonian on a Cylinder Geometry and Casimir Effect
10.10 Entanglement Entropy
Appendix 10.A. Moebius Transformations
References
Problems
Chapter 11: Minimal Conformal Models
11.1 Introduction
11.2 Null Vectors and Kac Determinant
11.3 Unitary Representations
11.4 Minimal Models
11.4.1 Kac Table
11.4.2 Differential Equations
11.4.3 Operator Product Expansion and Fusion Rules
11.4.4 Verlinde Algebra
11.5 Coulomb Gas
11.5.1 Free Theory of a Bosonic Field
11.5.2 Modified Coulomb Gas
11.5.3 Screening Operators
11.5.4 Correlation Functions
11.6 Landau–Ginzburg Formulation
11.7 Modular Invariance
11.7.1 Torus Geometry
11.7.2 Partition Function and Characters
Appendix 11.A. Hypergeometric functions
References
Problems
Chapter 12: Conformal Field Theory of Free Bosonic and Fermionic Fields
12.1 Introduction
12.2 Conformal Field Theory of Free Bosonic Fields
12.2.1 Quantization of the Bosonic Field
12.2.2 Vertex Operators
12.2.3 Free Bosonic Field on a Torus
12.3 Conformal Field Theory of a Free Fermionic Field
12.3.1 Quantization of the Free Majorana Fermion
12.3.2 Fermions on a Torus
12.4 Bosonization
12.4.1 Bosonization Rules
References
Problems
Chapter 13: Conformal Field Theories with Extended Symmetries
13.1 Introduction
13.2 Superconformal Models
13.3 Parafermion Models
13.3.1 Relation to Lattice Models
13.4 Kac–Moody Algebra
13.4.1 Virasoro Operators and Sugawara Formula
13.4.2 Maximal Weights
13.4.3 Wess–Zumino–Witten Models
13.5 Conformal Models as Cosets
13.5.1 Relation with parafermions
Appendix 13.A. Lie Algebra
References
Problems
Chapter 14: The Arena of Conformal Models
14.1 Introduction
14.2 The Ising Model
14.2.1 Operator Product Expansion and Correlation Functions
14.2.2 Coset Constructions and E8 Algebra
14.2.3 Characters and Partition Function
14.3 The Universality Class of the Tricritical Ising Model
14.4 3-state Potts Model
14.5 The Yang–Lee Model
14.6 Conformal Models with O(n) Symmetry
References
Problems
Part 4: Away from Criticality
Chapter 15: In the Vicinity of the Critical Points
15.1 Introduction
15.2 Conformal Perturbation Theory
15.3 Example: The Two-point Function of the Yang–Lee model
15.4 Renormalization Group and β-functions
15.5 c-theorem
15.6 Applications of the c theorem
15.6.1 Minimal Conformal Models Mp perturbed by the 1,3 Operator
15.6.2 Ising model at temperature T = Tc
15.6.3 A Lagrangian theory: the Sine–Gordon model
15.7 theorem
References
Chapter 16: Integrable Quantum Field Theories
16.1 Introduction
16.2 The Sinh–Gordon Model
16.3 The Sine–Gordon Model
16.4 The Bullogh–Dodd Model
16.5 Integrability versus Non-integrability
16.6 The Toda Field Theories
16.6.1 A(1)n Series
16.6.2 D(1)n Series
16.6.3 En Series
16.7 Toda Field Theories with Imaginary Coupling Constant
16.8 Deformation of Conformal Conservation Laws
16.8.1 Operator Product Expansion
16.8.2 Integrals of Motion of the Identity Family
16.8.3 Counting Method
16.8.4 Examples
16.9 Multiple Deformations of Conformal Field Theories
16.9.1 The Tricritical Ising Model
16.9.2 The Ising Model
References
Problems
Chapter 17: S-matrix Theory
17.1 Analytic Scattering Theory
17.1.1 General Properties
17.1.2 Two-body Scattering Process
17.2 General Properties of Purely Elastic Scattering Matrices
17.2.1 Rapidity variable and asymptotic states
17.2.2 Conserved Charges
17.2.3 Elasticity in the Scattering Processes
17.2.4 Factorization of the Scattering Processes
17.3 Unitarity and Crossing Invariance Equations
17.4 Analytic Structure and Bootstrap Equations
17.5 Conserved Charges and Consistency Equations
17.5.1 Non-degenerate Bootstrap Systems
Appendix 17.A. Historical Developments of the S-matrix Theory
Appendix 17.B. Scattering Processes in Quantum Mechanics
Appendix 17.C. n-particle Phase Space
References
Problems
Chapter 18: Exact S-Matrices
18.1 Yang–Lee and Bullogh–Dodd Models
18.2 1,3 Integrable Deformation of the Conformal Minimal Models M2,2n+3
18.3 Multiple Poles
18.4 S-Matrices of the Ising Model
18.4.1 Thermal deformation of the Ising Model
18.4.2 Magnetic Deformation of the Ising Model
18.5 The Tricritical Ising Model at T = Tc
18.6 Thermal Deformation of the 3-state Potts Model
18.6.1 Thermal Deformation of the 3-state Tricritical Potts Model
18.7 General Expression Toda Field Theories
18.8 Non-relativistic Limit of Toda Field Theories
18.9 Models with Internal O(n) Invariance
18.9.1 n > 2
18.9.2 n < 2
18.10 S-matrix of the Sine-Gordon Model
18.11 S-Matrices for 1,3, 1,2, 2,1 Deformation of Minimal Models
18.11.1 Quantum Group Symmetry of the Sine–Gordon
18.11.2 Restricted Sine–Gordon model
18.11.3 Quantum Group Symmetry of the Bullough–Dodd Model
18.12 Elastic SUSY S-matrix
References
Problems
Chpater 19: Form Factors and Correlation Functions
19.1 General Properties of the Form Factors
19.1.1 Faddeev–Zamolodchikov Algebra
19.1.2 Form Factors
19.2 Watson’s Equations
19.3 Recursive Equations
19.4 The Operator Space
19.5 Correlation Functions
19.6 Form Factors of the Stress-energy Tensor
19.7 Vacuum Expectation Values
19.8 Ultraviolet Limit
19.9 The Ising Model at T =Tc
19.9.1 The Energy Operator
19.9.2 Magnetization Operators
19.9.3 The Painlevé Equation
19.10 Form Factors of the Sinh–Gordon Model
19.10.1 Minimal Form Factor
19.10.2 Recursive Equations
19.10.3 General Properties of the Qn Solutions
19.10.4 The Elementary Solutions
19.11 The Ising Model in a Magnetic Field
References
Problems
Part 5: Finite Size Effects
Chapter 20: Thermodynamic Bethe Ansatz
20.1 Introduction
20.2 Casimir Energy
20.3 Bethe Relativistic Wave Function
20.3.1 Selection Rules
20.4 Derivation of Thermodynamics
20.5 The Meaning of Pseudo-energy
20.6 Infrared and Ultraviolet Limits
20.7 The Coefficient of Bulk Energy
20.8 The General Form of the TBA Equations
20.9 The Exact Relation λ(m)
20.10 Examples
20.10.1 Yang–Lee
20.10.2 The Ising Model in a Magnetic Field
20.10.3 The Tricritical Ising Model
20.11 Thermodynamics of the Free Field Theories
20.12 L-channel Quantization
20.13 LeClair–Mussardo formula
References
Problems
Chapter 21: Boundary Field Theory
21.1 Introduction
21.2 Stress-energy Tensor in Boundary CFT
21.3 Conformal Boundary Operators
21.4 Conformal Boundary States
21.4.1 Boundary Entropy
21.5 Operator Product Expansion Involving a Boundary Operator
21.6 Massive Integrable Boundary Field Theory
21.7 Boundary States
21.8 Massive Boundary Ising Model
21.9 Correlation Functions
References
Problems
Part 6: Non-Integrable Aspects
Chapter 22: Form Factor Perturbation Theor
22.1 Breaking Integrability
22.2 Multiple Deformations of the Conformal Field Theories
22.3 Form Factor Perturbation Theory
22.4 First-order Perturbation Theory
22.5 Non-locality and Confinement of the Excitations
22.6 Multi-frequency Sine–Gordon Model
22.6.1 The Generalized Ashkin–Teller Model
References
Problems
Chapter 23: Particle Spectrum by Semi-classicalMethods
23.1 Introduction
23.2 Kinks
23.3 A Semi-classical Formula for the Kink Matrix Elements
23.4 Universal Mass Formula
23.5 Symmetric Wells
23.6 Asymmetric Wells
23.7 Double Sine–Gordon Model
23.7.1 Dynamics of Long and Short Kinks
23.7.2 The importance of small kinks
References
Problems
Chapter 24: Interacting Fermions and Supersymmetric Models
24.1 Introduction
24.2 Fermion in a Bosonic Background
24.3 The Fermionic Bound States in T = 0 Sector
24.4 Symmetric Wells
24.5 Supersymmetric Theory
24.6 General Results in SUSY Theories
24.7 Integrable SUSY Models
24.8 Non-integrable Multi-frequency Super Sine-Gordon Models
24.9 Phase Transition and Meta-stable States
24.10 Summary
Refernces
Problems
Chapter 25: Truncated Hilbert Space Approach
25.1 Truncated Hamiltonians of Quantum Mechanics
25.1.1 Harmonic Oscillator
25.1.2 Basis of the Truncated Hamiltonian
25.2 Truncated Hamiltonian of the Deformed Conformal Models
25.2.1 General features of the finite-size energy levels
25.2.2 Effects of truncation
25.3 Finite-size Mass Corrections
25.4 The Scaling Region of the Ising Model
25.4.1 Analysis of the Ising Model through FFPT
25.4.2 Analysis of the Ising Model through THSA
References
Problems
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Fundamental concepts of phase transitions, such as order parameters, spontaneous symmetry breaking, scaling transformations, conformal symmetry and anomalous dimensions, have deeply changed the modern vision of many areas of physics, leading to remarkable developments in statistical mechanics, elementary particle theory, condensed matter physics and string theory. This self-contained book provides a thorough introduction to the fascinating world of phase transitions and frontier topics of exactly solved models in statistical mechanics and quantum field theory, such as renormalization groups, conformal models, quantum integrable systems, duality, elastic S-matrices, thermodynamic Bethe ansatz and form factor theory. The clear discussion of physical principles is accompanied by a detailed analysis of several branches of mathematics distinguished for their elegance and beauty, including infinite dimensional algebras, conformal mappings, integral equations and modular functions.
Besides advanced research themes, the book also covers many basic topics in statistical mechanics, quantum field theory and theoretical physics. Each argument is discussed in great detail while providing overall coherent understanding of physical phenomena. Mathematical background is made available in supplements at the end of each chapter, when appropriate. The chapters include problems of different levels of difficulty. Advanced undergraduate and graduate students will find this book a rich and challenging source for improving their skills and for attaining a comprehensive understanding of the many facets of the subject.