توضیحاتی در مورد کتاب Statistical Methods for Annotation Analysis
نام کتاب : Statistical Methods for Annotation Analysis
عنوان ترجمه شده به فارسی : روش های آماری برای تجزیه و تحلیل حاشیه نویسی
سری :
نویسندگان : Silviu Paun, Ron Artstein, Massimo Poesio
ناشر : Morgan & Claypool
سال نشر : 2022
تعداد صفحات : 217
ISBN (شابک) : 9781636392530 , 1636392539
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface\nAcknowledgements\nIntroduction\n Reliability and Validity, and Other Issues\n A Very Short Guide to the Probabilistically More Advanced Content in the Book\n The Companion Website\nAnalysing Agreement\n Coefficients of Agreement\n Introduction and Motivations\n Coefficients of Agreement\n Agreement, Reliability, and Validity\n A Common Notation\n The Need for Dedicated Measures of Agreement\n Chance-Corrected Coefficients for Measuring Agreement Between Two Coders\n More than Two Coders\n Krippendorff\'s Alpha and Other Weighted Agreement Coefficients\n Relations Among Coefficients\n An Integrated Example\n Missing Data\n Unitizing or Markable Identification\n Bias and Prevalence\n Annotator Bias\n Prevalence\n Appendix: Proofs for Theorems Presented in This Chapter\n Annotator Bias and Variance with Multiple Coders\n Annotator Bias for Weighted Measures\n Using Agreement Measures for CL Annotation Tasks\n General Methodological Recommendations\n Generating Data to Measure Reproducibility\n Establishing Significance\n Interpreting the Value of Kappa-Like Coefficients\n Agreement and Machine Learning\n Labelling Units with a Common and Predefined Set of Categories\n Part-of-Speech Tagging\n Dialogue Act Tagging\n Named Entities\n Other Labelling Tasks\n Marking Boundaries and Unitizing\n Segmentation and Topic Marking\n Prosody\n Set-Based Labels\n Anaphora\n Discourse Deixis\n Summarization\n Word Senses\n Summary\n Methodology\n Choosing a Coefficient\n Interpreting the Values\n Probabilistic Models of Agreement\n Introduction\n Easy Items, Difficult Items, and Agreement\n Aickin\'s\n Modelling Stability\n Coder Stability: A Discussion\n Latent Class Analysis of Agreement Patterns\n Varying Panel of Coders\n Fixed Panel of Coders\n An NLP Case Study\n Summary\nAnalysing and Using Crowd Annotations\n Probabilistic Models of Annotation\n Introduction\n Terminology and a Simple Annotation Model\n Modelling Annotator Behaviour\n Modelling Item Difficulty\n Hierarchical Structures\n Adding Features\n Modelling Sequence Labelling Tasks\n Aggregating Anaphoric Annotations\n Aggregation with Variational Autoencoders\n Modelling Complex Annotations\n Learning from Multi-Annotated Corpora\n Introduction\n Learning with Soft Labels\n Learning Individual Coder Models\n Dealing with Noise\n Pooling Coder Confusions\n Summary\n Bibliography\n Authors\' Biographies