توضیحاتی در مورد کتاب Supramolecular Coordination Complexes: Design, Synthesis, and Applications
نام کتاب : Supramolecular Coordination Complexes: Design, Synthesis, and Applications
ویرایش : 1
عنوان ترجمه شده به فارسی : مجتمع های هماهنگی فوق مولکولی: طراحی، سنتز و کاربردها
سری :
نویسندگان : Sankarasekaran Shanmugaraju (editor)
ناشر : Elsevier
سال نشر : 2022
تعداد صفحات : 498
ISBN (شابک) : 032390582X , 9780323905824
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 75 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Front cover
Half title
Title
Copyright
Contents
Contributors
Chapter 1 Supramolecular coordination
self-assembly—A general
introduction
1.1 Introduction
1.2 Coordination-driven molecular self-assembly
1.3 Background and design principles
1.3.1 Directional bonding approach
1.3.2 Symmetry interaction approach
1.3.3 Paneling approach
1.3.4 Weak-link approach
1.3.5 Dimetallic building block approach
1.4 Characterization of supramolecular coordination complexes
1.5 Functionalization of supramolecular coordination complexes
1.6 Self-sorting and self-selection in supramolecular coordination complex formation
1.7 Selected examples of 2D and 3D supramolecular coordination complexes
1.8 Conclusion
Acknowledgment
References
Chapter 2 Supramolecular coordination complexes from metalloligands: Hydrogen bonding-based self-assemblies
2.1 Introduction
2.2 Coordination complexes as the metalloligands containing appended H-bonding functional groups
2.3 Synthesis and characterization of metalloligands
2.4 Metalloligands offering different appended functional groups
2.4.1 Metalloligands offering appended phenol and catechol groups
2.4.2 Metalloligands offering appended aryl carboxylic acid groups
2.5 Conclusions
Acknowledgments
References
Chapter 3 Supramolecular coordination complexes from metalloligands: Heteronuclear complexes and coordination polymers and their applications in catalysis
3.1 Introduction
3.2 Synthesis and characterization of metalloligands
3.3 Metalloligands offering different appended functional groups
3.3.1 Metalloligands offering appended pyridyl rings
3.3.2 Metalloligands offering other appended heterocyclic rings
3.3.3 Metalloligands offering appended arylcarboxylic acid groups
3.4 Catalytic aspects
3.4.1 Oxidation and dealkylation reactions of substituted phenols
3.4.2 A3-coupling reactions
3.4.3 Strecker reactions
3.4.4 Ring-opening reactions
(RORs)
3.4.5 Knoevenagel condensation reactions
3.5 Conclusions
Acknowledgments
References
Chapter 4 Platinum-containing heterometallic metallacycles and metallacages
4.1 Introduction
4.2 Platinum-containing heterometallic metallacycles
4.2.1 Pt–Pd heterometallic metallacycles
4.2.2 Pt–Zn heterometallic metallacycles
4.2.3 Pt–Fe heterometallic metallacycles
4.2.4 Pt–Cu heterometallic metallacycles
4.2.5 Pt–Ir heterometallic metallacycles
4.2.6 Pt–Ln heterometallic metallacycles
4.3 Platinum-containing heterometallic metallacages
4.3.1 Pt–Al/Ga heterometallic metallacages
4.3.2 Pt–Ru heterometallic metallacages
4.3.3 Pt–Zn heterometallic metallacages
4.3.4 Pt–Fe heterometallic metallacages
4.3.5 Pt–Co heterometallic metallacages
4.3.6 Pt–Pd heterometallic metallacages
4.4 Conclusion and perspective
References
Chapter 5 Self-assembly of pyrazine-based metallamacrocycles: Design, synthesis, and applications
5.1 Introduction
5.2 Molecular triangles
5.3 Molecular squares
5.4 Molecular rectangles
5.5 Molecular hexagons
5.5.1 Ionic hexagonal macrocycles
5.5.2 Neutral hexagonal macrocycles
5.6 Rings and cages
5.7 Conclusions and outlook
Acknowledgments
References
Chapter 6 Rhenium
(I)-based supramolecular coordination complexes: Synthesis and functional properties
6.1 Introduction
6.2 Metal precursors for supramolecular architectures
6.3 Organic ligands as sources for anionic building frameworks
6.4 Flexible bidentate N,N donors with ether, ester, or amide functionalities and its SCCs
6.5 Neutral rigid pyridine-based ditopic- and tritopic ligands and its SCCs
6.6 Neutral flexible ditopic P=O donor ligands and its SCCs
6.7 Neutral flexible tritopic N-donor ligands and its SCCs
6.8 Neutral flexible tetratopic N-donor ligands and its SCCs
6.9 Neutral flexible hexatopic N-donor ligands and its SCCs
6.10 Neutral flexible benzimidazole-based ditopic N-donor ligands and its SCCs
6.11 Heteroatom donor-based ligands and its SCCs
6.12 Applications of fac-Re
(CO)3 core-based SCCs
References
Chapter 7 Photo switching self-assembled coordination macrocycles: Synthesis and functional applications
7.1 Introduction
7.2 Bisthienylethene building block-based SCC
7.3 Styryl building block-based SCC
7.4 Azo building block-based SCC
7.5 Spiropyran building blocks-based SCC
7.6 Host–guest interaction driven photochromism in SCC
7.7 Conclusion
Acknowledgment
References
Chapter 8 Photoactive finite supramolecular coordination cages for photodynamic therapy
8.1 Introduction
8.2 SCCs for PDT applications
8.2.1 SCCs containing porphyrins
8.2.2 SCCs containing BODIPYs
8.2.3 SCCs containing ruthenium complexes
8.2.4 Others SCCs
8.3 Conclusion and future prospects
Acknowledgment
References
Chapter 9 Biosensing properties of supramolecular coordination complexes
9.1 Introduction
9.2 Biosensing properties of supramolecular coordination complexes
(SCCs)
9.2.1 Interaction of SCCs with nucleosides
9.2.2 Interaction of SCCs with nucleic acids
9.2.3 Interaction of SCCs with protein and amino acids
9.2.4 Interaction of SCCs with carbohydrates
9.2.5 Interaction of SCCs with steroids and fatty acids
9.3 Conclusion
Acknowledgments
References
Chapter 10 Hierarchical molecular self-assemblies of coordination complexes
10.1 Introduction
10.2 Hierarchical self-assembly of metal complexes
containing π-systems
10.3 Effect of hydrogen bonding on the self-assembly of metal complexes in solution
10.4 Hierarchical self-assembly of metal complexes in solution driven by hydrophobic interactions
10.5 Hierarchical self-assembly of metal complexes through
host–guest interactions
10.6 Conclusion
References
Chapter 11 Biomimetic supramolecular coordination chemistry and molecular machines
11.1 Introduction
11.2 Redox-triggered molecular motion
11.3 Exchange of metal ions
11.3.1 Addition and removal of metal ions
11.4 Application of molecular motion
11.4.1 Chirality inversion
11.4.2 Guest release and uptake
11.4.3 Switchable catalysis
11.4.4 Signal transduction and networking of several switches
11.5 Conclusion and outlook
References
Chapter 12 Biomedical application of supramolecular coordination complexes
12.1 Introduction
12.2 Platinum complexes as anticancer agent
12.3 Palladium complexes as anticancer agent
12.4 Ruthenium and other metallosupramolecular complexes as anticancer agent
References
Chapter 13 Rise of supramolecular nanozymes: Next-generation peroxidase enzyme-mimetic materials
13.1 Introduction
13.1.1 What are nanozymes?
13.1.2 What is supramolecular chemistry?
13.1.3 Supramolecular nanozymes
13.2 Peroxidases
13.2.1 MOFs As Peroxidase mimics
13.2.2 COFs as peroxidase mimics
13.2.3 NCs as peroxidase mimics
13.3 Conclusion
Acknowledgement
Conflict of Interest
References
Chapter 14 Cavity-controlled supramolecular catalysis
14.1 Introduction
14.2 Catalysis in confined cavity
14.2.1 Metal-organic cage
(MOC) with transition metal ions
14.3 Conclusion and future prospects
Acknowledgments
References
Chapter 15 Anion sensing applications of supramolecular coordination complexes
15.1 Introduction
15.2 Anion receptors
15.3 Anion sensors
15.3.1 Metal extrusion assays
15.3.2 Ternary anion-coordination complexes
15.3.3 Indicator displacement assays
15.3.4 Luminescent metal complex-based anion receptors
15.3.5 Luminescent lanthanide complexes
15.3.6 Mechanically interlocked anion sensors
15.4 Conclusions and future perspectives
References
Chapter 16 Supramolecular coordination complexes for fluorescence sensing of nitroaromatic explosives
16.1 Introduction
16.2 Two-dimensional
(2D) metallacycles for sensing of nitroaromatic explosives
16.2.1 Molecular rhomboid based fluorescent sensor for NACs
16.2.2 Molecular squares based fluorescent sensors for NACs
16.2.3 Molecular rectangles-based fluorescent sensors for NACs
16.2.4 Molecular tweezer based fluorescent sensors for NACs
16.2.5 Hexagonal macrocycles based fluorescent sensors for NACs
16.3 Fluorescence sensing by 3D metallocages
16.3.1 Molecular trigonal prism based fluorescent sensors for NACs
16.3.2 Molecular tetragonal prism-based fluorescent sensors for NACs
16.4 Conclusion
Acknowledgment
References
Chapter 17 Metal ion sensing applications of finite supramolecular coordination complexes
17.1 Introduction
17.2 Alkali metal ion sensing by 2D and 3D supramolecular coordinaiton complexes
17.2.1 2D metallamacrocyclic receptors for alkali metals
17.2.2 3D metallacage receptors for alkali metals
17.3 Transition metal ion sensing by 2D and 3D supramolecular coordination complexes
17.3.1 2D metallamacrocyclic receptors for transition metals
17.3.2 3D metallacage receptors for transition metals
17.4 Conclusions
References
Index
Back cover