Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies

دانلود کتاب Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies

32000 تومان موجود

کتاب توسعه پایدار توسط هوش مصنوعی و یادگیری ماشین برای انرژی های تجدیدپذیر نسخه زبان اصلی

دانلود کتاب توسعه پایدار توسط هوش مصنوعی و یادگیری ماشین برای انرژی های تجدیدپذیر بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد

این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 11


توضیحاتی در مورد کتاب Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies

نام کتاب : Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies
عنوان ترجمه شده به فارسی : توسعه پایدار توسط هوش مصنوعی و یادگیری ماشین برای انرژی های تجدیدپذیر
سری :
نویسندگان : , , , ,
ناشر : Elsevier
سال نشر : 2022
تعداد صفحات : 418
ISBN (شابک) : 0323912281 , 9780323912280
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 77 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Front Cover
Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies
Copyright
Dedication
Contents
Contributors
About the editors
Preface
Chapter 1: Application of alternative clean energy
1.1. Introduction
1.2. Solar energy
1.2.1. Photovoltaic systems
1.2.2. Solar thermal energy systems
1.2.3. Solar water heating (SWH) systems
1.2.4. Solar cooker
1.2.4.1. Box type solar cooker
1.2.4.2. Parabolic concentrating type solar cooker
1.2.5. Solar water pumps
1.2.6. Solar space heating
1.2.6.1. Active space heating
1.2.6.2. Passive space heating
1.3. Geothermal energy
1.3.1. Geothermal power generation
1.3.1.1. Direct steam power plants
1.3.1.2. Single flash system power plants
1.3.1.3. Double flash steam power plants
1.3.1.4. Binary cycle power plants
1.3.2. Direct uses of geothermal energy
1.4. Wind energy
1.4.1. Horizontal Axis wind turbine
1.4.2. Vertical axis wind turbine
1.4.3. Wind turbine applications
1.5. Biomass energy
1.5.1. Method of biomass energy extraction
1.5.1.1. Pyrolysis
1.5.2. Gasification
1.5.3. Anaerobic digestion
1.5.4. Biofuels
1.5.5. Bioethanol production
1.5.5.1. Sugar or starch fermentation
1.5.5.2. Bioethanol from lignocellulose fermentation
1.5.6. Biodiesel
1.6. Ocean and tidal energy
1.6.1. Wave energy
1.6.2. OTEC
1.6.3. TIC
1.7. Small, micro, and mini hydro plants
1.8. Case study
1.9. Conclusion
References
Chapter 2: Optimization of hybrid energy generation
2.1. Introduction
2.2. RES data and uncertainty statistical analysis
2.2.1. Wind source analysis
2.2.2. Solar source analysis
2.3. Test case modifications and solution methodology
2.3.1. Test case modifications
2.3.2. Configuration of cases
2.3.3. Solution methodology
2.3.4. Sensitivity factors
2.3.5. Locational marginal pricing (LMP)
2.3.6. Reliability parameters
2.4. Results
2.4.1. Impact of probabilistic nature and location of RES on sensitivity factors
2.4.2. Impact of probabilistic nature and location of RES on LMP
2.4.3. Impact of the probabilistic nature and location of RES on TTC and TRM
2.5. Discussion and conclusion, future scope
2.5.1. Discussion
2.5.2. Conclusion
2.5.3. Future scope
Acknowledgment
References
Chapter 3: IoET-SG: Integrating internet of energy things with smart grid
3.1. Introduction
3.2. Traditional grid
3.3. Smart grid
3.4. Internet of energy things (IoET)
3.5. IoET-SG system
3.6. Research challenges and future guidelines
3.7. Conclusion
References
Chapter 4: Evolution of high efficiency passivated emitter and rear contact (PERC) solar cells
4.1. Introduction
4.2. Photon absorption and optical generation
4.3. Loss mechanisms in PERC solar cells
4.3.1. Optical losses
4.3.2. Electrical losses
4.3.2.1. Loss due to reflection
4.3.2.2. Incomplete absorption
Interband absorption
Intraband absorption
Free-carrier absorption
4.3.2.3. Shadowing
4.3.2.4. Resistive losses
4.3.2.5. Recombination losses
Radiative recombination
Auger recombination
Shockley-Read-Hall (SRH) recombination
Surface recombination
4.4. Carrier transport equations
4.4.1. Solar cell parameters
4.5. PERC technology
4.5.1. PERC process flow
4.5.2. Surface passivation
4.5.2.1. Passivation by SiO2
4.5.2.2. Passivation by SiNx
4.5.2.3. Passivation by Al2O3
4.5.2.4. Dielectric stack passivation
4.5.3. LBSF and rear local contact
4.5.4. Rear polishing
4.5.5. PERC performance
4.5.6. Improvements of PERC solar cells
4.5.7. Further improvements
4.5.8. Bifacial PERC
4.6. Fabrication of PERC solar cells
4.6.1. Saw damage removal, texturization, and cleaning
4.6.1.1. Saw damage removal
4.6.1.2. Texturization
4.6.1.3. Wafer cleaning
4.6.2. Diffusion and oxidation
4.6.2.1. Phosphorus diffusion
Process steps for phosphorus diffusion
PSG removal
4.6.2.2. Thermal oxidation
4.6.3. Reactive ion etching
4.6.4. Plasma-enhanced chemical vapor deposition (PECVD)
4.6.5. Atomic layer deposition (ALD)
4.6.6. Laser ablation
4.6.7. Metallization
4.7. Characterization equipment
4.7.1. Scanning electron microscopy (SEM)
4.7.2. Four point probe measurement
4.7.3. Thickness profilometer
4.7.4. I-V and C-V measurement
4.7.5. X-ray photo electron spectroscopy (XPS)
4.7.6. Lifetime and Suns-Voc measurement
4.7.7. Reflectance and external quantum efficiency (EQE) measurement
4.7.7.1. Reflectance measurement
4.7.7.2. External quantum efficiency (EQE) measurement
4.7.8. Current-voltage (I-V) measurement
4.8. Conclusion
References
Chapter 5: Online-based approach for frequency control of microgrid using biologically inspired intelligent controller
5.1. Introduction
5.2. Test system description
5.2.1. Photovoltaic model
5.2.2. Wind energy
5.2.3. Diesel engine generator (DEG) model
5.2.4. Fuel cell, BESS, and FESS
5.3. Fuzzy logic controller
5.4. Particle swarm optimization (PSO)
5.5. Gray wolf optimization (GWO)
5.6. Results analysis
5.7. Conclusion
References
Chapter 6: Optimal allocation of renewable energy sources in electrical distribution systems based on technical and econo ...
6.1. Introduction
6.1.1. Motivation
6.1.2. Literature review
6.1.3. Contribution and chapter organization
6.2. Problem formulation
6.2.1. Multiobjective function
6.2.2. Equality constraints
6.2.3. Inequality constraints of distribution line
6.2.4. Inequality constraints of DG units
6.3. Cosine adapted whale optimization algorithm (CAWOA)
6.4. Results and discussion
6.4.1. Test systems
6.4.2. Analysis of optimal results
6.4.3. Comparison results
6.4.4. Impact of DG on branch currents
6.4.5. Impact of loadability variation on EDS
6.5. Conclusions
Abbreviations
References
Chapter 7: Optimization of renewable energy sources using emerging computational techniques
Abbreviations
7.1. Introduction
7.2. Sources of renewable energy
7.2.1. Bioenergy (BE)
7.2.2. Geothermal energy (GE)
7.2.3. Hydropower energy (HPE)
7.2.4. Hydrogen energy (HE)
7.2.5. Solar energy (SE)
7.2.6. Wind energy (WE)
7.2.7. Ocean energy (OE)
7.3. Artificial intelligence (AI)
7.3.1. Artificial intelligence in bioenergy
7.3.2. Artificial intelligence in geothermal energy
7.3.3. Artificial intelligence in hydro energy
7.3.4. Artificial intelligence in hydrogen energy
7.3.5. Artificial intelligence in solar energy
7.3.6. Artificial intelligence in wind energy
7.3.7. Artificial intelligence in ocean energy
7.4. Conclusion
References
Chapter 8: Advanced renewable dispatch with machine learning-based hybrid demand-side controller: The state of the art an ...
8.1. Introduction
8.2. Building energy demand forecasting with machine learning
8.2.1. Predictions on cooling/heating/electrical loads
8.2.2. Machine learning modeling techniques
8.3. Flexible demand-side management strategies
8.3.1. Smart appliances
8.3.2. HVAC systems
8.3.3. Plug-in loads and storages
8.4. Machine learning-based advanced controllers
Acknowledgment
References
Chapter 9: A machine learning-based design approach on PCMs-PV systems with multilevel scenario uncertainty
9.1. Introduction
9.2. Overview on PCMs-PV systems and operations
9.2.1. Passive PCMs-PV systems
9.2.2. Active PCMs-PV systems
9.2.3. Combined passive/active PCMs-PV systems
9.3. Mechanism for machine learning on performance prediction of nonlinear systems
9.4. Application of machine learning in PCMs-PV systems
9.4.1. Surrogate model for performance prediction
9.4.2. System optimization
9.4.2.1. Single-objective optimization
9.4.2.2. Multiobjective optimization of the hybrid renewable system using the Pareto NSGA-II
9.4.3. Robust optimization with multilevel scenario uncertainty
9.5. Challenges and outlooks
9.5.1. Uncertainty quantification and probability density function
9.5.2. Stochastic sampling size and uncertainty-based optimization function
9.5.3. Hybrid learning and advanced optimization algorithms
9.5.4. Multicriteria decision-marking for trade-off solutions
Acknowledgment
References
Chapter 10: Agent-based peer-to-peer energy trading between prosumers and consumers with cost-benefit business models
10.1. Introduction
10.2. Agent-based peer-to-peer energy trading with dynamic internal pricing
10.2.1. P2P energy trading modes with different energy forms
10.2.2. Mechanisms and mathematical models for dynamic internal pricing
10.2.2.1. Theoretical mechanisms
10.2.2.2. Mathematical models
10.3. Blockchain and machine learning technologies in P2P energy trading
10.3.1. Blockchain in P2P energy trading
10.3.2. Machine learning technologies in P2P energy trading
10.4. Electricity market and techno-economic incentives for P2P energy market
10.4.1. Decentralized electricity market design
10.4.2. Techno-economic incentives
10.5. Challenges and outlook
Acknowledgment
References
Chapter 11: Machine learning-based hybrid demand-side controller for renewable energy management
11.1. Introduction
11.1.1. Renewable and hybrid energy system
11.1.2. Demand-side management
11.2. Machine learning at a glance
11.2.1. Machine learning meets model-based control
11.2.2. The application of machine learning in hybrid demand-side controllers
11.2.3. Support vector machine
11.2.4. K-means clustering
11.2.5. Extreme learning machine
11.2.6. Linear regression
11.2.7. Partial least squares
11.2.8. Challenges and future research direction
11.3. Conclusion
References
Chapter 12: Prediction of energy generation target of hydropower plants using artificial neural networks
12.1. Introduction
12.2. Artificial neural network (ANN)
12.3. Performance measurement parameters
12.4. Modeling and analysis
12.5. Conclusion
References
Chapter 13: Response surface methodology-based optimization of parameters for biodiesel production
13.1. Introduction
13.2. Problem formulation
13.3. Mathematical model of biodiesel production
13.3.1. Optimization of the mathematical model
13.3.2. Proposed methodology
13.3.3. Basic elephant swarm water search algorithm (ESWSA)
13.4. Methodology
13.5. Reaction conditions by RSM
13.6. Surface plot by different combinations in RSM model
13.7. Conclusion
References
Chapter 14: Reservoir simulation model for the design of irrigation projects
14.1. Introduction
14.2. System description
14.3. Cost-benefit functions
14.4. Methodology
14.4.1. Linear programming model (LP model)
14.4.2. Reservoir simulation
14.4.2.1. The simulation model
14.4.2.2. System design variables, parameters, and constants
14.5. Simulation computations
14.6. Results and discussion
14.7. Response of Harabhangi irrigation project
14.7.1. Support for the use of simulation
14.8. Conclusion
References
Chapter 15: Effect of hydrofoils on the starting torque characteristics of the Darrieus hydrokinetic turbine
Abbreviations
15.1. Introduction
15.2. Investigated parameters for the Darrieus hydrokinetic turbine
15.3. Numerical simulation analysis
15.3.1. Turbine model development
15.3.2. Grid generation
15.3.3. Boundary conditions and turbulence modeling
15.4. Results and discussion
15.4.1. Performance characteristics
15.4.2. Flow contours
15.5. Conclusions
References
Index
Back Cover




پست ها تصادفی