Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing

دانلود کتاب Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing

50000 تومان موجود

کتاب مهندسی نانومقیاس پایدار: از طراحی مواد تا پردازش شیمیایی نسخه زبان اصلی

دانلود کتاب مهندسی نانومقیاس پایدار: از طراحی مواد تا پردازش شیمیایی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing

نام کتاب : Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing
عنوان ترجمه شده به فارسی : مهندسی نانومقیاس پایدار: از طراحی مواد تا پردازش شیمیایی
سری :
نویسندگان :
ناشر : Elsevier
سال نشر : 2019
تعداد صفحات : 458
ISBN (شابک) : 0128146818 , 9780128146811
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 64 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


0
Front-Matter_2020_Sustainable-Nanoscale-Engineering
Sustainable Nanoscale Engineering
Copyright_2020_Sustainable-Nanoscale-Engineering
Copyright
Dedication_2020_Sustainable-Nanoscale-Engineering
Dedication
Contributors_2020_Sustainable-Nanoscale-Engineering
Contributors
Acknowledgment_2020_Sustainable-Nanoscale-Engineering
Acknowledgment
1
1 -
Challenges and Directions for Green Chemical Engineering—Role of Nanoscale Materials
1. Introduction
2. From Green Chemistry to Sustainable Chemical Engineering
3. The Promise of Continuous Processing and Monitoring
4. Green and Sustainable Raw Materials for Chemical Manufacturing
5. The Role of Green Solvents in Chemical Manufacturing
6. The Quest for Clean Water
7. Membranes for a Greener Future
8. Advanced Porous Materials for Energy-Efficient Processes
9. Artificial Intelligence: A New Dimension in Chemical Engineering
10. The Drawback of Nanomaterials
References
2
2 -
Nature-Inspired Chemical Engineering: A New Design Methodology for Sustainability
1. Sustainability in Chemical Engineering
2. Sustainability: Design Philosophy
2.1 Why Should We Use Nature as a Source for Inspiration?
2.2 Ways to Connect Nature to Design: Inspiration Versus Imitation
3. Nature-Inspired Structuring at the Nanoscale: Confinement Effects
4. Bridging Nano- and Macroscale: Hierarchical Transport Networks
5. Nature-Inspired Structuring at the Macroscale
6. Conclusions
Acknowledgments
References
3
3 -
Manufacturing Nanoporous Materials for Energy-Efficient Separations: Application and Challenges
1. Introduction
2. Nanoporous Materials
2.1 Zeolites
2.2 Metal-Organic Frameworks
2.3 Organic Nanoporous Materials
2.4 Carbon-Based Nanoporous Materials
3. Fabrication of Membranes Containing Nanoporous Materials
3.1 Molecular Transport Through Membranes
3.1.1 Sorption Diffusion Mechanism
3.1.2 Molecular Transport in Mixed Matrix Membrane
3.2 Integrally Skinned Asymmetric Membranes
3.2.1 Asymmetric Polymers of Intrinsic Microporosity Membrane
3.2.2 Asymmetric Carbon Molecular Sieve Membranes
3.2.3 Asymmetric Mixed Matrix Membrane
3.3 Supported Crystalline Membranes
3.3.1 Zeolite Composite Membrane
3.3.2 MOF Composite Membrane
3.3.3 Crystalline Nanoporous Polymer Composite Membrane
3.4 Thin Film Composite Membrane
3.4.1 Nanoporous Polymeric Thin Film Composite Membrane
3.4.2 Mixed Matrix Thin Film Composite Membrane
4. Fabrication of Adsorbent Containing Nanoporous Materials
4.1 Scale-Up of Nanoporous Powders
4.2 Monolithic Adsorbents
4.3 Fiber Adsorbents
4.4 Additive Manufactured Adsorbents
5. Application of Nanoporous Materials in Energy-Efficient Separations
5.1 Membrane Separations
5.1.1 Gas Separation
5.1.1.1 H2 Purification
5.1.1.2 Light Hydrocarbon Separation
5.1.1.3 CO2 Capture
5.1.2 Organic Solvents Separation
5.1.3 Desalination
5.2 Adsorption Separations
5.2.1 Gas Separation
5.2.1.1 H2 Separation
5.2.1.2 Light Hydrocarbon Separation
5.2.2 Organic Solvent Separation
5.2.3 Pollutant Removal
6. Future Challenges
6.1 Cost Reduction of Nanoporous Membrane
6.2 Mechanical Strength
6.3 Stability
6.4 Reproducibility
6.5 Sustainability of Nanoporous Material Fabrication
7. Conclusions
Acknowledgments
References
4
4 -
Sustainability of One-Dimensional Nanostructures: Fabrication and Industrial Applications
1. Introduction
2. One-Dimensional Nanostructures and Their Properties
2.1 One-Dimensional Carbon Allotrope Nanostructures
2.1.1 Nanotubes
2.1.2 Nanowires
2.1.3 Nanorods
2.1.4 Nanofibers
2.2 One-Dimensional Metal Nanostructures
2.2.1 Metals
2.2.2 Metal Oxides
2.2.3 Rare Earth Metals and Nanocomposites
2.3 Novel One-Dimensional Nanostructures
3. Application of 1D Nanostructures in Industries and for Environmental Sustainability Maintenance
3.1 CO2 Capturing Methods in Industries
3.1.1 Precombustion Route
3.1.2 Postcombustion Capturing Route
3.1.3 Rich Oxy-Combustion Route
3.2 1D Nanostructures for Industrial Carbon Capture Applications
3.2.1 1D Carbon Nanostructures
3.2.2 One-Dimensional Metal Nanostructures
3.2.3 Novel One-Dimensional Metal Nanostructure in CO2 Capture
3.3 Carbon Storage
3.4 Sustainable Energy
3.5 Pollution Control
4. Current Challenges and Future Directions
5. Conclusion
References
5
5 -
Porous Materials for Catalysis: Toward Sustainable Synthesis and Applications of Zeolites
1. Introduction
2. Crystalline Porous Materials
3. Amorphous Porous Materials
4. Hierarchical Zeolites
5. A Multiscale System in Zeolite Catalysis
6. Microwave-Assisted Postsynthesis Treatment of Zeolites
7. Structured Binderless Zeolite Catalysts by Dry Gel Conversion (DGC)
8. Conclusion
References
6
6 -
Green Synthesis and Engineering Applications of Metal–Organic Frameworks
1. Introduction
2. Green Synthesis of Metal–Organic Frameworks
2.1 Selection of Metals and Organic Linkers
2.1.1 Metals
2.1.2 Organic Linkers
2.2 Solvent Selection and Management
2.3 Energy Input
2.4 Flow Chemistry and Downstream Processes
2.4.1 Flow Chemistry
2.4.2 Downstream Processes
2.5 Commercial Development and Future Perspectives
3. Green Applications of Metal–Organic Frameworks
3.1 Solar Energy Conversion
3.1.1 Solar Fuel Photocatalytic Production
3.1.1.1 Photocatalysis
3.1.1.2 Solar Fuel Electrocatalytic Production
3.1.2 Dye-Sensitized Solar Cells
3.2 Energy Storage
3.2.1 Gas Storage
3.2.2 Supercapacitors and Batteries
3.2.3 Thermal Storage
4. Conclusions
References
7
7 -
Metal–Organic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment
1. Introduction to Wastewater Treatment
1.1 Industrial Waste and Water Pollution
1.2 Current State of Wastewater Treatment
2. Adsorption for Wastewater Treatment
2.1 Theory of Adsorption
2.2 Influencial Factors on Adsorption
3. Adsorbent Materials
3.1 Current State of Adsorbent Materials
3.2 Metal–Organic Frameworks
3.2.1 Carboxylate Frameworks
3.2.2 Zeolitic Imidazolate Frameworks
3.2.3 Nanoporous Carbons Derived From Metal–Organic Frameworks
3.2.4 Adsorption Mechanisms in Metal–Organic Frameworks
4. Sustainability Aspects of Metal–Organic Framework–Based Adsorbent Materials
4.1 Production
4.2 Formulation and Shaping
4.3 Application for the Adsorptive Removal of Organic Pollutants From Water
4.3.1 Adsorption of Organic Contaminants from Water Using Metal–Organic Frameworks
4.3.2 Adsorption of Organic Pollutants From Water by Nanoporous Carbons
5. Conclusions and Perspectives
References
8
8 -
Toward Sustainable Chemical Processing With Graphene-Based Materials
1. Introduction
2. Graphene
2.1 Synthetic Methods for Graphene
2.1.1 Graphene Flakes: Graphite Exfoliation
2.1.2 Graphene Sheet: Chemical Vapor Deposition
2.2 Porous Graphene Membranes
2.2.1 In-Plane Pore Generation Methods
2.2.2 Gas Transport in Porous Graphene Membranes
3. Graphene Oxide
3.1 Synthesis and Chemistry
3.2 Fabrication of Graphene Oxide Membranes
4. Liquid Separation
4.1 Water Purification and Ion Molecular Sieving
4.2 Water Transport Mechanism in Graphene Oxide Membranes
4.3 Organic Solvent Nanofiltration Membranes
4.4 Polymer–Graphene Oxide Mixed Matrix Membranes
5. Gas Separation of Graphene Oxide Membranes
5.1 Gas Transport Mechanism in Graphene Oxide Membranes
5.2 Gas Barrier Properties
5.3 Porous Graphene Oxide: Synthesis and Possibility for Membrane Application
5.4 Graphene Oxide–Based Mixed Matrix Membranes for Gas Separation
6. Large Area Graphene-Based Membranes: Challenges and Opportunities
7. Conclusion and Prospectives
References
9
9 -
Polymers of Intrinsic Microporosity and Their Potential in Process Intensification
1. Introduction
2. Development of the Polymer of Intrinsic Microporosity Concept
2.1 Intrinsic Microporosity
2.2 Microporous Network Polymers
2.3 Solution-Processable Polymers of Intrinsic Microporosity
2.4 Other High Free Volume Polymers
3. Polymer of Intrinsic Microporosity Structures
3.1 PIM-1 and Its Modifications
3.1.1 Synthesis of PIM-1
3.1.2 Chemical Modification of PIM-1
3.1.3 Crosslinking of PIM-1
3.2 Polymers of Intrinsic Microporosity Incorporating Spirocenters
3.3 Polymers of Intrinsic Microporosity Incorporating Ethanoanthracene or Anthracene Maleimide Derivatives
3.4 Polymers of Intrinsic Microporosity Incorporating Triptycene Derivatives
3.5 Other Polymers of Intrinsic Microporosity
4. Polymer of Intrinsic Microporosity Applications
4.1 Gas Separation Membranes
4.1.1 The Trade-off Between Permeability and Selectivity
4.1.2 Blend Membranes
4.1.3 Mixed Matrix Membranes
4.1.4 Asymmetric and Thin Film Composite Membranes
4.2 Pervaporation Membranes
4.2.1 Phenol From Dilute Aqueous Solution
4.2.2 Ethanol From Dilute Aqueous Solution
4.2.3 Volatile Organic Compounds From Dilute Aqueous Solution
4.2.4 Butanol From Dilute Aqueous Solution
4.2.5 Dehydration of Alcohols
4.2.6 Ethylene Glycol Separation
4.3 Nanofiltration Membranes
4.4 Adsorbents
4.4.1 Adsorption of Gases
4.4.2 Adsorption of Organic Vapors
4.4.3 Adsorption of Organic Compounds From Solution
4.5 Electrospun Fibrous Membranes
4.6 Other Applications
5. Concluding Remarks
References
10
10 -
Polymer Membranes for Sustainable Gas Separation
1. Introduction
2. Transport Mechanism—Membrane Structure
3. Under Humid Conditions
3.1 Polymers With Intrinsic Microporosity
3.2 Thermally Rearranged Polymer Membranes
3.3 Mixed Matrix Membranes
3.3.1 Porous Organic Framework
3.3.2 Carbon Nanotubes
3.3.3 Graphene Oxide
3.4 Facilitated Transport Membranes
3.4.1 Fixed-Site Carrier Facilitated Transport Membranes
3.4.2 Mobile Carrier Facilitated Transport Membranes
3.4.3 Conclusion
4. Challenges in Membrane Science and Limits of Technology
4.1 Stability Over Time
4.2 Module Formation
4.3 Thin Membranes
4.4 Sustainable Fabrication
4.5 Process Configuration
4.6 Conclusions
5. Applications of Gas Separation Membranes
5.1 Sustainable Solution for Gas Separation
5.2 Current Commercial Membranes
5.2.1 Air Separation
5.2.2 Air Drying
5.2.3 Hydrogen Separation
5.2.4 Natural Gas Purification
5.2.5 Separation of Volatile Organic Components
5.2.6 CO2 Separation
6. Conclusions
References
11
11 -
Block Copolymer Membranes
1. Block Copolymer Self-Assembly and Morphology
1.1 Block Copolymer Equilibrium Morphology
1.2 Self-Assembly of Block Copolymers in Solution
2. Block Copolymers for Dense Membrane Preparation
2.1 Gas Separation
2.2 Liquid Separation
2.3 Fuel Cell and Batteries
3. Block Copolymers for Surface Modification of Membranes for Water-Based Separations
4. Block Copolymers for Porous Ultra- and Nanofiltration Membranes
4.1 Preparation by Etching of Dense Films
4.2 Preparation by Self-Assembly and Non–Solvent-Induced Phase Separation
4.2.1 First Reports and Basic Principles
4.2.2 Solvent Optimization and Influence of the Block Copolymer Order in Solution on the Membrane Morphology
4.2.3 Tailoring Pore Size
4.2.4 Influence of Additives and Complexing Agents
4.2.5 Beyond Size: Separation by Charge and Stimuli Response
4.2.6 From Lab to Technical Manufacture
4.2.7 Exploring Different Chemistries
5. Block Copolymers for Biomimetic 3D Hierarchical and Isotropic Structures
6. Sustainability of Block Copolymer Membranes
7. Conclusion: Advantages, Drawbacks, and Perspectives
Acknowledgments
References
12
12 -
Imprinted Materials: From Green Chemistry to Sustainable Engineering
1. Introduction
2. Preparation of Imprinted Polymers
2.1 Toward Green Chemistry and Engineering of Molecularly Imprinted Polymers
2.1.1 Green Monomers
2.1.2 Green Solvents for Porogens
2.1.3 Green Polymers and Polymerization Techniques
2.1.3.1 Bulk Polymerization
2.1.3.2 Suspension (Bead) Polymerization
2.1.3.3 Emulsion Polymerization
2.1.3.4 Precipitation Polymerization
2.1.3.5 Iniferter Polymerization
2.1.3.6 Reversible Addition Fragmentation Chain Transfer Polymerization
3. Computational Design of Molecularly Imprinted Polymers
4. Applications of Imprinted Polymers
4.1 Solid-Phase Extraction With Molecularly Imprinted Polymers
4.2 Pharmaceutical Manufacturing With Molecularly Imprinted Polymers
4.3 Water Treatment With Molecularly Imprinted Polymers
4.4 Sustainable Catalysis With Molecularly Imprinted Polymers
4.4.1 Molecularly Imprinted Polymer–Assisted Hydrolysis
4.4.2 MIP-Assisted Photocatalysis
4.4.3 MIP-Assisted Elimination Reactions
4.4.4 Molecularly Imprinted Polymer–Assisted C–C Bond Formations
5. Conclusions and Future Trends
References
13
13 -
Fundamental Theory and Molecular Design of Thermoresponsive Polymers Expandable to Sustainable and Smart Materials
1. Introduction
2. Understanding Themoresponsive Polymers
3. Molecular Design of Polymers Exhibiting Lower Critical Solution Temperature–Type Phase Transition in Water
4. Molecular Design of Polymers Exhibiting Lower Critical Solution Temperature–Type Phase Transition in Organic Solvents
5. Molecular Design of Polymers Exhibiting Upper Critical Solution Temperature–Type Phase Transition in Water
6. Molecular Design of Polymers Exhibiting Upper Critical Solution Temperature–Type Phase Transition in Organic Solvents
7. The Application of Thermoresponsive Polymers
7.1 Drug Delivery System
7.2 Tissue Engineering
7.3 Thermoresponsive Catalyst
7.4 Thermoresponsive Separation
7.5 Sensory Application
7.6 Oil Recovery
8. Other Stimuli
9. Polymer Synthesis
10. Conclusion and Perspectives
References
14
14 -
Nanostructured Membranes for Enhanced Forward Osmosis and Pressure-Retarded Osmosis
1. Introduction
2. Graphene Oxide and Its Derivatives
3. Carbon Nanotubes
4. Carbon Quantum Dots
5. Metal and Metal Oxide Nanoparticless
6. Zeolites
7. Metal–Organic Frameworks
8. Polyelectrolytes
9. Aquaporins
10. Zwitterions
11. Sustainability of Nanostructured Membranes
12. Summaries and Outlooks
References
15
15 -
Sustainable Approaches for Materials Engineering With Supercritical Carbon Dioxide
1. Reducing Material Intensity with Supercritical Carbon Dioxide
2. Choosing Paths on the CO2 Phase Diagram
3. Heat and Mass Transfer Characteristics of CO2
3.1 Heat Transfer
3.2 Mass Transfer
4. Solubility Characteristics of CO2
5. Required and Desirable Physical Property Data for Selected Applications
5.1 Overview for Selected Applications
5.2 Solubility of Metal Complexes in CO2
6. Selected Applications
6.1 Metal Nanoparticle Deposition Onto Porous Substrates
6.2 Nanocellular Foaming of Polymers
6.3 Metal Deposition Into Metal Organic Frameworks
6.4 Drying of Ag Nanoparticle–Cellulose Nanofibrils Composite Aerogels
6.5 Other Materials and Processes
7. Conclusions and Future Outlook
References
16
16 -
Rational Design of Continuous Flow Processes for Synthesis of Functional Molecules
1. Introduction
1.1 Part 1. The Desired Characteristics of Manufacturing Functional Products in Flow
2. Product Quality in Flow Processes
3. Response to Market Demand
4. Capital Cost and Ease of Implementation
4.1 Part 2. The Concept of Molecular Context
4.2 Part 3. Digital Molecular Technology
4.3 Part 4. Toward Rational Design of Flow Processes
4.4 Part 5. Environmental Impacts of Continuous Flow Processes
4.5 Part 6. Sustainability of Continuous Flow Processes
5. Conclusions
Acknowledgments
References
17
17 -
Systematic MultiObjective Life Cycle Optimization Tools Applied to the Design of Sustainable Chemical Processes
1. Introduction
2. MultiObjective Life Cycle Optimization of Chemical Products and Processes
2.1 Costing of Chemical Processes
2.2 Life Cycle Assessment
2.2.1 Goal and Scope Definition
2.2.2 Inventory Analysis
2.2.3 Life Cycle Impact Assessment
2.2.3.1 Classification
2.2.3.2 Characterization
2.2.3.3 Normalization
2.2.3.4 Valuation
2.2.4 Interpretation
2.3 Chemical Process Modeling
2.3.1 Equation-Oriented Versus Simulation-Optimization Approaches
2.3.2 MultiObjective Optimization
2.3.3 MOO Solution Methods
2.3.3.1 Weighted Sum Method
2.3.3.2 Epsilon Constraint Method
2.3.4 Methods for Selecting the Most Preferred Solution
3. Areas of Application
3.1 Supply Chain Optimization
3.2 Process Flowsheet Optimization
3.3 Environmental Assessment of Chemicals
4. Conclusions
References
18
Index
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
S
T
U
V
W
Z




پست ها تصادفی