توضیحاتی در مورد کتاب The IGBT device: physics, design and applications of the insulated gate bipolar transistor
نام کتاب : The IGBT device: physics, design and applications of the insulated gate bipolar transistor
عنوان ترجمه شده به فارسی : دستگاه IGBT: فیزیک، طراحی و کاربردهای ترانزیستور دوقطبی گیت عایق
سری :
نویسندگان : Baliga, B Jayant
ناشر : William Andrew
سال نشر : 2015
تعداد صفحات : 409
ISBN (شابک) : 9781455731435 , 9780081023068
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 17 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Related Titles......Page 3
Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design,and Applications......Page 4
Copyright......Page 5
List of Contributors......Page 6
Preface......Page 8
1.2 Silicon power device applications......Page 12
1.3 Silicon carbide ideal specific on-resistance......Page 14
1.4 Silicon carbide power rectifiers......Page 15
1.5 Silicon power MOSFETs......Page 17
1.6 Silicon carbide power MOSFETs......Page 19
1.7 Silicon carbide power junction barrier Schottky field effect transistors (JBSFETs)......Page 20
1.8 Silicon carbide power MOSFETs with improved high frequency performance......Page 22
1.9 Silicon carbide bidirectional field effect transistor......Page 23
1.10 Silicon carbide power device applications......Page 24
1.11 Gallium nitride power devices......Page 25
1.12 Gallium nitride power device applications......Page 27
1.13 Summary......Page 28
References......Page 29
2.1 Crystal and band structures......Page 31
2.2.1 Impurity doping and carrier density......Page 34
2.2.2 Mobility......Page 36
2.2.3 Drift velocity......Page 38
2.2.4 Impact ionization coefficients and critical electric field strength......Page 39
2.3 Other physical properties......Page 41
2.4.1 Extended defects......Page 42
2.4.2 Point defects......Page 46
2.4.3 Carrier lifetimes......Page 47
References......Page 50
3.1 Crystal structure and related properties......Page 53
3.2 Polarization charges......Page 58
3.3 Substrates for GaN epitaxial growth......Page 60
3.3.1 Sapphire substrates......Page 61
3.3.2 SiC substrates......Page 62
3.3.3 Silicon substrates......Page 63
3.4 Band structure and relevant properties......Page 66
3.4.1 Effective mass of carries......Page 68
3.4.2 Effective density of states......Page 69
3.5 Transport properties......Page 70
3.6 Impact ionization coefficients......Page 74
3.7 Defects in GaN......Page 77
3.7.1 Intrinsic point defects......Page 78
3.7.3 Impurities in GaN......Page 79
3.7.5 Group-IV impurities......Page 80
3.7.7 Deep levels......Page 81
References......Page 82
4.1 Introduction......Page 88
4.2.1 Introduction......Page 90
4.2.2 SiC-JBS device design for low on-state loss......Page 92
4.2.3 Edge terminations for SiC-JBS device......Page 98
4.2.4 SiC-JBS device design for higher ruggedness......Page 99
4.2.6 PiN diode......Page 101
4.2.7 Bipolar degradation......Page 107
4.2.8 Summary......Page 109
4.3.1 Introduction......Page 110
Fabrication process......Page 113
Blocking characteristics......Page 115
Exclusive process technologies for SiC-MOSFET......Page 117
Cell design......Page 118
IEMOSFET devices......Page 119
4.3.2.2 UMOSFET structure......Page 120
Fabrication process......Page 121
Blocking characteristics......Page 122
UMOSFET with gate shielding structure......Page 124
IE-UMOSFET and V-groove trench devices......Page 126
4.3.2.3 SiC-MOSFET loss estimation due to its high drain–source capacitance......Page 127
4.3.2.4 Short-circuit safe operating area......Page 128
4.3.2.5 Improvement of trade-off characteristic between on-resistance and SCSOA for SiC UMOSFET structure......Page 133
4.3.3.1 Monolithically integrated SiC-MOSFET and SBD structure......Page 135
4.3.3.2 Superjunction MOSFET device......Page 139
4.3.3.3 SiC MOSFET with reverse blocking capability......Page 140
4.3.3.4 Complementary p-channel MOSFET device......Page 141
4.3.4 Summary......Page 143
4.4.1 Introduction......Page 144
4.4.2.1 p-channel IGBT or n-channel IGBT......Page 145
4.4.2.2 Flip-type IEIGBT structure......Page 147
References......Page 149
5.1.1 Material properties......Page 159
5.1.2 Epitaxy and doping......Page 161
5.1.3 Polarization and 2DEG......Page 163
5.1.4 MOS......Page 164
5.1.5 Power device applications......Page 167
5.2.1 Lateral......Page 168
5.2.2 Vertical......Page 172
5.3.1 Lateral......Page 174
5.3.2 Vertical......Page 175
5.4.1 Static......Page 178
5.4.2 Dynamic switching......Page 187
5.4.3 Robustness......Page 191
5.4.4 Device choices in applications......Page 199
5.5.1.1 Efficient power conversion......Page 201
5.5.2 Hybrid transistors......Page 202
5.5.2.3 Direct-drive transistors (Texas Instruments)......Page 203
5.6.1 Power ICs......Page 204
5.6.2 Optoelectronic ICs......Page 206
5.7 Future trend, possibilities, and challenges......Page 208
References......Page 209
6.1 Introduction......Page 217
6.2.1 Normally-off operation......Page 218
6.2.2 High breakdown voltage......Page 219
6.2.4 High temperature operation......Page 220
6.4 Availability of GaN substrate......Page 221
6.5 Vertical devices: Current aperture vertical electron transistor......Page 223
6.6 A brief history of GaN vertical devices......Page 224
6.7 Design of a current aperture vertical electron transistor and its key components......Page 227
6.8 Doping in the aperture (Nap) and length of the aperture (Lap)......Page 229
6.9 Drift region thickness (tn−)......Page 230
6.10.2 Unmodulated electrons......Page 234
6.10.3 Through the gate......Page 235
6.11.1 A discussion on doped versus implanted current blocking layer......Page 236
6.12 Trench-current aperture vertical electron transistor......Page 238
6.13.1 Non-regrowth-based metal oxide semiconductor field-effect transistors......Page 241
6.13.2 Regrowth-based metal oxide semiconductor field-effect transistor (OGFET)......Page 243
6.13.3 OGFET switching performance......Page 247
6.14 GaN-high voltage diodes......Page 248
6.15 Edge termination, leakage, and active area of the device......Page 250
Acknowledgment......Page 253
References......Page 254
Further Reading......Page 256
7.1 Introduction......Page 257
7.2.2.1 PWM signal channel......Page 258
7.2.3.1 Gate driver schematic......Page 259
7.2.3.3 Separate power supply......Page 261
7.2.3.5 High current drive......Page 265
7.2.4 Active gating......Page 266
7.2.4.1 Block diagram......Page 268
7.2.4.2 Voltage clamping to reduce voltage overshoot......Page 271
7.2.7 Characterization of 1700V SiC MOSFET and comparison with 1700V Si IGBT and 1700V Si BIMOSFET [7]......Page 272
7.2.8 Characterization of 1200V, 45A SiC JFET module......Page 275
7.2.9 Review of commercially available gate drivers......Page 276
7.3.1.1 Gate-loop inductance......Page 278
7.3.1.3 Common-source inductance......Page 279
7.3.1.4 Common-mode current......Page 280
7.3.2 Layout recommendations......Page 281
7.3.4 Commercially available gate driver ICs and trends......Page 282
7.4.1.1 Common mode issue in gate drivers......Page 286
7.4.1.4 Shoot through due to inappropriate dead time......Page 287
7.4.2.2 Boost-converter operation......Page 288
7.4.2.3 Buck-boost converter operation......Page 289
7.4.4 GD characterization for the current switch operation and test circuit......Page 290
7.5 Gate drivers for HV SiC devices......Page 291
7.5.1 GD specifications and design considerations......Page 292
7.5.2 GD power supply......Page 293
7.5.3 Intelligent gate driver......Page 295
7.5.3.1 Block diagram......Page 297
7.5.3.2 Short-circuit protection scheme......Page 299
7.5.3.3 Hard switch short-circuit fault test setup......Page 301
7.5.3.4 Single pulse test setup......Page 302
7.5.3.5 Boost converter test setup......Page 304
References......Page 307
8.1 Hard switching vs soft switching [1]......Page 309
8.2 Bidirectional buck/boost converter [7]......Page 314
8.2.1 Coupled inductor at CRM......Page 315
8.2.2 Bidirectional buck/boost converter......Page 317
8.3.1 GaN-based MHz totem-pole PFC......Page 320
8.3.1.1 ZVS extension......Page 321
8.3.1.2 Variable on-time control......Page 323
8.3.1.3 Dual-phase interleaving and ripple cancellation......Page 324
8.3.2 PCB winding integrated coupled inductor......Page 325
8.3.3 Balance technique to reduce common mode noise......Page 327
8.4.1 Introduction to datacenter architecture with 400 V bus......Page 329
8.4.2 400 V/12 V LLC converter with matrix transformer......Page 332
8.4.3 Integrated planar matrix transformer......Page 334
8.4.4 Shielding techniques for planar matrix transformer......Page 338
8.4.5 Hardware demonstration......Page 343
8.4.6 Conclusions......Page 345
8.5 EMI filter design for high frequency GaN converters......Page 346
8.6 Summary......Page 347
References......Page 348
9.1 Retrospective......Page 352
9.2.1.1 Introduction......Page 357
9.2.1.3 Operation costs......Page 359
9.2.1.5 Summary......Page 360
9.2.2.2 Hardware......Page 362
Switching curves......Page 365
Efficiency......Page 366
9.2.3.1 Photovoltaic application with 10kV SiC MOSFETs......Page 367
9.2.3.2 AC grid application with 15kV SiC devices......Page 369
9.3 What will happen?......Page 375
References......Page 377
10.1 The silicon IGBT......Page 379
10.2 History of wide bandgap semiconductor power devices......Page 382
10.3 Technology trends......Page 386
10.4 Wide bandgap semiconductor device applications......Page 387
10.5 Wide bandgap semiconductor device market......Page 388
10.6 Silicon carbide power MOSFET price projections......Page 390
10.7 Social impact of wide bandgap semiconductor devices......Page 391
10.8 Summary......Page 392
References......Page 393
Index......Page 395
Back Cover......Page 409