چو ایران نباشد تن من مباد
The Mathematical and Philosophical Legacy of Alexander Grothendieck

دانلود کتاب The Mathematical and Philosophical Legacy of Alexander Grothendieck

64000 تومان موجود

کتاب میراث ریاضی و فلسفی اسکندر گروتندیک نسخه زبان اصلی

دانلود کتاب میراث ریاضی و فلسفی اسکندر گروتندیک بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 4


توضیحاتی در مورد کتاب The Mathematical and Philosophical Legacy of Alexander Grothendieck

نام کتاب : The Mathematical and Philosophical Legacy of Alexander Grothendieck
ویرایش : 1
عنوان ترجمه شده به فارسی : میراث ریاضی و فلسفی اسکندر گروتندیک
سری : Chapman Mathematical Notes
نویسندگان : , ,
ناشر : Springer
سال نشر : 2025
تعداد صفحات : 0
ISBN (شابک) : 9783031689338 , 9783031689345
زبان کتاب : English
فرمت کتاب : epub    درصورت درخواست کاربر به PDF تبدیل می شود
حجم کتاب : 30 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Bibliography
Contents
Grothendieck\'s 40 Main Years (1949–1991): A Unitary Vision Through the TSK Models (Topos of Sheaves over Kripke Models)
Contents
1 Introduction
2 A Brief Look at the TSK Models
2.1 Phenomenological Layer (S)
2.2 Historical Layer (K)
2.3 Metaphysical Layer (T)
3 First Epoch: SK, 1949–1953 and 1955–1957
3.1 SK(1): Functional Analysis, 1949–1953
3.2 SK(2): Homological Algebra, 1955–1957
4 Second Epoch: TSK, 1958-1964 and 1964–1968
4.1 (T)SK(3): Algebraic Geometry, 1958–1964
4.2 TSK(4): Arithmetic Geometry, 1964–1968
5 Third Epoch: TSK, 1981-1986 and 1983–1991
5.1 TSK(5): Topological Algebra and Mathematical Philosophy, 1981–1986
5.2 TSK(6): Universal Algebra and World View, 1983–1991
6 Conclusions
References
Grothendieck and Differential Equations
Contents
1 Foreword
2 Differential Operators
3 Singularities
4 Gauss-Manin Connection
5 Galois Aspects
6 Conclusion
References
The Birkhoff-Grothendieck Theorem
Contents
1 Introduction
2 Vector Bundles on Riemann Surfaces
3 The Grothendieck Theorem
3.1 Some Further Works in the Spirit of Birkhoff-Grothendieck
4 Riemann-Hilbert Problem and Birkhoff\'s Theorem
4.1 Fuchsian Differential Equations on Riemann Surfaces
4.2 The Bolibrukh Counterexamples: An Instance
4.3 Birkhoff\'s Theorem
References
Infinite Products and Congruent Numbers
Contents
1 Introduction
2 A Piece of Correspondence
3 Euler: The Emergence of the Functions and ζ
3.1 Formal Calculations
3.2 Reciprocity I
4 Euler\'s Constants for Number Fields
5 Reciprocity II: Euler\'s Criterion
6 Arithmetic Hecke Products
6.1 Explicit Formulas
6.2 Artin (and Other) L-Functions
7 An Example from the Last Entry in Gauss\'s Diary
7.1 BSD Conjecture
7.2 Higher Reciprocity Laws
8 Emergence of the Zeta Function II
9 Adèles and Idèles
9.1 From Automorphic Forms to Automorphic Representations
9.2 ζ- Function of a Scheme over Z
10 The Congruent Number Problem and Higher Reciprocity
10.1 History of the Problem
10.2 Present and Future
10.3 Density of Congruent Numbers
10.4 Tate–Shafarevich Groups of the Congruent Number Elliptic Curves
11 Aspect of Grothendieck\'s Work on L-Functions
11.1 The Gross–Zagier Formula and Applications
Appendix by Bill Allombert: Computational Aspect Using PARI/GP
Solving the Fermat Equation Using the Dirichlet Class Number Formula
Computing Hilbert Class Fields Using Dirichlet Class Number Formula
Solving the Congruent Number Problem Using Analytical Methods
The BSD Formula
The Gross–Zagier Formula
References
The Enduring Legacy of Grothendieck\'s Duality Theorem
Contents
1 Introduction
2 Fantappié\'s Vision
3 The Arrival of Topological Vector Spaces
4 Continuing Implications
4.1 Hyperfunctions and Analytic Functionals
4.2 Duality in Hypercomplex Analysis
References
Conjectures and Counterexamples in Grothendieck\'s Work in Functional Analysis
Contents
1 Introduction
2 Background
2.1 Dieudonné, Schwartz, and Functional Analysis in Nancy in 1949
3 Grothendieck and Functional Analysis
3.1 Topological Vector Spaces, Counterexamples, and Solutions to Open Problems
4 Tensor Products
5 Grothendieck\'s Produits Tensoriels Topologiques etEspaces Nucléaires
6 1983: The Year of the Counterexamples
7 A Few Final Remarks
References
Tôhoku 65 Years After
Contents
1 Grothendieck\'s New Algebraic Geometry: Tôhoku 65 Years After, Introductory Elements
2 Philosophical Intermezzo
3 Spectral Sequence, First Introduction as Example of a Synthesis Mechanism
4 Grothendieck in His First Chapter Gives Generalities on Abelian Categories
5 Grothendieck\'s Vision of Sheaves, Brief Historical Reconstruction
6 Homological Algebra in Abelian Categories
7 First Introduction to Spectral Sequences
8 Some Interesting Examples of Spectral Sequences
9 Universal Functors
10 Effaceable Functors
11 Derived Functors
12 In Two Variables
13 Spectral Sequences, Spectral Functors
14 Remark on Exactness
15 Spectral Sequence
16 Spectral Sequence of a Filtered Complex
17 Two Spectral Sequences Convergent to the Same Graded Object
18 Resolvent Functors
19 Cohomology with Coefficients in a Sheaf
20 Philosophical General Reflection
21 Annex
21.1 Examples with Details
References
About Grothendieck Fibrations
Contents
1 Introduction
2 Categories Varying over a Category
3 Indexed Categories and Grothendieck Fibrations
4 Logic in the Fibrational Framework
Appendix
References
Grothendieck Did Not Believe in Universes, He Believed in Topos and Schemes
Contents
1 I Think There Is Mathematics Behind All of This
1.1 Generality and Unity
1.2 The Mathematics of Injective Resolutions
1.3 Naive Simplicity for Spectral Sequences
2 Equivalence of Categories
3 The Worst Joke I Ever Heard
3.1 Strong Limit Cardinals
3.2 What Is Required for Grothendieck\'s Large Structures
References
The ``Unifying Notion\'\' of Topos
Contents
1 Introduction
2 The Multiform Nature of Toposes
2.1 Toposes as Generalised Topological Spaces
2.2 Toposes as Universes
2.3 Toposes as Classifying Spaces
3 The Reception of Toposes
3.1 The Vision and the Tool
3.2 `Sites Without Toposes\', `Toposes Without Sites\'
4 Toposes as `Bridges\': the Underlying Vision and Some Examples
4.1 The Key Principles
4.2 Some Examples of `Bridges\'
Theories of Presheaf Type
Topos-Theoretic Fraïssé Theorem
Topological Galois Theory
Stone-Type Dualities
5 Future Perspectives
References
Motivating Motives
Contents
1 Introduction
2 The Riemann Hypothesis
3 The Weil Conjectures
4 Motives
5 Further Reading
5.1 Introduction
5.2 The Riemann Hypothesis
5.3 The Weil Conjectures
5.4 Motives
My View on and Experience with Grothendieck\'sAnabelian Geometry
Contents
1 Introduction
2 Following Galois
3 Anabelian Geometry
4 m-Step Solvable Anabelian Geometry
5 The Grothendieck Philosophy
References
Grothendieck\'s Use of Equality
Contents
1 Overview
2 Introduction
3 Universal Properties
4 Products in Practice
5 Universal Properties in Algebraic Geometry
6 The Problem with Grothendieck\'s Use of Equality
7 More on ``Canonical\'\' Maps
8 Canonical Isomorphisms in More Advanced Mathematics
9 Summary
References
Boolean Valued Models, Sheafifications, and Boolean Ultrapowers of Tychonoff Spaces
Contents
1 Introduction
2 Preliminaries and Notations
3 From Boolean Valued Models to Presheaves, and Conversely
3.1 Boolean Valued Models as Separated Presheaves
3.2 Fullness, Mixing Property, and Sheaves
3.3 The Duality Between Boolean Valued Models and Presheaves
4 A Topological Description of Sheafifications
4.1 The Mixified Model
5 Boolean Ultrapowers as Sheafifications
5.1 The Semantics of C(`3́9`42`\"̇613A``45`47`\"603ASt(B), Y) When Y Is Tychonoff
5.2 The Degree of Elementarity of Y Inside C(`3́9`42`\"̇613A``45`47`\"603ASt(B), Y)+/G
References
Toward a Geometry for Syntax
Contents
1 Introduction
1.1 Type Theory and the Relative Point of View
1.2 Universes in Type Theory and Category Theory
Strict Base Change via Universal Objects
Grothendieck\'s Universes
Universes in a Category
Grothendieck–Bénabou Universes Inside a Topos
1.3 Abstract and Concrete Syntax of Type Theory
Computerized Proof Assistants
External vs. Internal Equality
Decidability of External Equality
Running Example: Injectivity of Type Constructors
1.4 Normalization and Injectivity for Free Monoids
The Theory of Monoids
Constructing the Free Monoid on a Set
Injectivity of Scalar Multiplication in the Free Monoid
2 Free Models of Type Theory and Normalization
2.1 Natural Models of Type Theory
Representable Maps and Natural Models
Function Spaces on a Natural Model
The (2,1)-Category of Natural Models
Free Natural Models: The Abstract Syntax of Type Theory
From Universes to Natural Models
2.2 Injectivity of Type Constructors in Free Natural Models
2.3 Normal Forms Are not Functorial in Substitutions
2.4 Models of Variables and the Method of Computability
Models of Variables Over a Natural Model
Why Is It Hard to Build a Model Based on Normal Forms?
Tait\'s Method of Computability
Freyd\'s Categorical Reconstruction of Tait Computability
3 Normalization by Gluing for Free Natural Models
3.1 Synthetic Tait Computability for Models of Type Theory
The Topos of Computability Spaces Over a Model of Variables
Recollement of Computability Spaces
The Internal Language of Computability Spaces
Internalizing the Model of Variables
The Computability Space of Normal Forms
Injectivity of Normal Type Constructors
The Universe of Normalization Spaces
Closure of Normalization Spaces Under Connectives
3.2 From Normalization Spaces to a Natural Model ofType Theory
3.3 The Normalization Result
The Functors of Atomic and Canonical Points
Hydration of Variables via Bocquet, Kaposi, and Sattler\'s inserter
The Normalization Map and Its Injectivity
3.4 Injectivity of Type Constructors
4 Concluding Remarks
References
Investigating Definability in Propositional Logic via Sheaves on Grothendieck Topologies
Contents
1 Introduction
2 Intuitionistic Logic and Heyting Algebras
3 A Route to Dualities
4 Sheaf Representation
5 Exactness Properties
6 Applications to Proof Theory and Model Theory
7 Fixpoints and Periodicity
8 Solving Equations via Projectivity
9 Conclusions
References
Grothendieck and Model Theory: Five Charactersin Search of a Theme
Contents
1 Prelude: Grothendieck on Mysteries and Galois
2 Introduction
3 Stability: An Early Grothendieckian Theme?
3.1 Classification Theory
3.2 Model Theory: Perspective and Fine Grain
Taxonomies
3.3 The Main Dividing Line: Stability
Grothendieck, 1952: Early Version of Stability
4 Galois Theory of Model Theory
4.1 Model Theory as a Natural Galois-Theoretic Framework
Poizat Makes the Connection Explicit
In First Order, the Key Role of Imaginaries
4.2 Some Translations (Following Medvedev/Takloo-Bighash)
4.3 Summary of the First Rapprochement: The Two Sources
5 Galois à la Grothendieck, in Model Theory
5.1 Interpretations and Stability
5.2 Interpretation Functor Between Classes of Models
6 Categories and Abstract Elementary Classes: The Great Reversal
6.1 Abstract Elementary Classes: Model Theory\'sSemantic Essence
6.2 Accessible Categories and Grothendieck
6.3 Opening Toward the Future
7 Two Ascents: Hrushovski\'s Core and Higher Stability
7.1 Ascent 1: Definability Patterns (Some Features)
7.2 Ascent 2: Higher Stability?
8 Conclusive Remarks
Appendices
A Model Theoretic Galois Theory
A.1 Normal and Splitting Extensions
A.2 Some Differences (Lost in Translation)
A.3 A Couple of Notions for the Translation
Normal Extensions
Splitting Extensions
A.4 A Key Step: Coding Finite Sets
The Crucial Notion
B Makkai-Reyes, Stable Interpretations
B.1 The Makkai-Reyes Approach: Models as Functors
B.2 Interpretation Functor Between Classes of Models
B.3 Examples: ACF, RCF
B.4 Stable Interpretations: A Bit on Galois Theory
B.5 The Galois Group of a First-Order Theory
C On Hrushovski\'s Definability Patterns
C.1 The Pattern Language: First Obstruction
C.2 Possible Workarounds
C.3 Galois Morleyizations
C.4 Abstract Cores (Hrushovski)
C.5 The Core of j?
References
Context-Dependence and Descent Theory
Contents
1 Context-Dependence
2 Grothendieck\'s Framework of Fibered Categories
3 Pursuing Descent for Context-Dependence
4 Conclusion
Appendix
References
Grothendieck and Teichmüller Modular Spaces
Contents
1 Origin of the Problem
2 Algebraic Curve Relative to an Analytic Space
3 Teichmüller Curves
4 Opération of the Group γ
5 Curves of Genus g
6 Moduli Space of Curves of Genus g
7 Ordinary Curves
8 Foundations of Analytic Geometry
9 Some Problems of Moduli
10 Linear Rigidification
11 Existence of the Teichmüller Space




پست ها تصادفی