The Method of Newton’ s Polyhedron in the Theory of Partial Differential Equations

دانلود کتاب The Method of Newton’ s Polyhedron in the Theory of Partial Differential Equations

42000 تومان موجود

کتاب روش چندوجهی نیوتن در نظریه معادلات دیفرانسیل جزئی نسخه زبان اصلی

دانلود کتاب روش چندوجهی نیوتن در نظریه معادلات دیفرانسیل جزئی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب The Method of Newton’ s Polyhedron in the Theory of Partial Differential Equations

نام کتاب : The Method of Newton’ s Polyhedron in the Theory of Partial Differential Equations
عنوان ترجمه شده به فارسی : روش چندوجهی نیوتن در نظریه معادلات دیفرانسیل جزئی
سری :
نویسندگان : ,
ناشر : Springer
سال نشر : 1992
تعداد صفحات : 275
ISBN (شابک) : 9789401047944 , 9789401118026
زبان کتاب : English
فرمت کتاب : djvu    درصورت درخواست کاربر به PDF تبدیل می شود
حجم کتاب : 4 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Title page
Preface
Chapter 1. Two-sided estimates for polynomials related to Newton\'s polygon and their application to studying local properties of partial differential operators in two variables
Introduction
§l. Newton\'s polygon of a polynomial in two variables
§2. Polynomials admitting of two-sided estimates
§3. N Quasi-elliptic polynomials in two variables
§4. N Quasi-elliptic differential operators
Appendix to §4
Chapter 2. Parabolic operators associated with Newton\'s polygon
Introduction
§1. Polynomials correct in Petrovskil\'s sense
§2. Two-sided estimates for polynomials in two variables satisfying Petrovskil\'s condition. N -parabolic polynomials
§3. Cauchy\'s problem for N-stable correct and N-parabolic differential operators in the case of one spatial variable
§4. Stable-correct and parabolic polynomials in several variables
§5. Cauchy\'s problem for stable-correct differential operators with variable coefficients
Chapter 3. Dominantly correct operators
Introduction
§1. Strictly hyperbolic operators
§2. Dominantly correct polynomials in two variables
§3. Dominantly correct differential operators with variable coefficients (the case of two variables)
§4. Dominantly correct polynomials and the corresponding differential operators (the case of several spatial variables)
Chapter 4. Operators of principal type associated with Newton\'s polygon
§l. Introduction. Operators of principal and quasi-principal type
§2. Polynomials of N-principal type
§3. The main L 2 estimate for operators of N -principal type
Appendix to §3
§4. Local solvability of differential operators of N-principal type
Appendix to §4
Chapter 5. Two-sided estimates in several variables relating to Newton\'s polyhedra
Introduction
§l. Estimates for polynomials in IRn relating to Newton\'s polyhedra
§2. Two-sided estimates in some regions in R^n relating to Newton\'s polyhedron. Special classes of polynomials and differential operators in several variables
Chapter 6. Operators of principal type associated with Newton\'s polyhedron
Introduction
§1. Polynomials of N -principal type
§2. Estimates for polynomials of N -principal type in regions of special form
§3. The covering of IRn by special regions associated with Newton\'s polyhedron
§4. DifferentiaI operators of N-principal type with variable coefficients
Appendix to §4
Chapter 7. The method of energy estimates in Cauchy\'s problem
§1. Introduction. The functional scheme of the proof of the solvability of Cauchy\'s problem
§2. Sufficient conditions for the existence of energy estimates
§3. An analysis of conditions for the existence of energy estimates
§4. Cauchy\'s problem for dominantly correct differential operators
References
Index




پست ها تصادفی