توضیحاتی در مورد کتاب The theory and technique of electronic music
نام کتاب : The theory and technique of electronic music
ویرایش : Draft
عنوان ترجمه شده به فارسی : تئوری و تکنیک موسیقی الکترونیکی
سری :
نویسندگان : Miller Puckette
ناشر : World Scientific Publishing Company
سال نشر : 2007
تعداد صفحات : 333
ISBN (شابک) : 9789812700773 , 9812700773
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 2 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Sinusoids, amplitude and frequency (11)
1.1 Measures of Amplitude . . . . . . . . (13)
1.2 Units of Amplitude . . . . . . . . . . (14)
1.3 Controlling Amplitude . . . . . . . . (15)
1.4 Frequency . . . . . . . . . . . . . . . (16)
1.5 Synthesizing a Sinusoid . . . . . . . (17)
1.6 Superposing Signals . . . . . . . . . (20)
1.7 Periodic Signals . . . . . . . . . . . . (21)
1.8 About the Software Examples . . . . (22)
Quick Introduction to Pd . . . . . . (25)
How to find and run the examples . (27)
1.9 Examples . . . . . . . . . . . . . . . (27)
Constant amplitude scaler . . . . . . (27)
Amplitude control in decibels . . . . (29)
Smoothed amplitude control with an envelope generator (31)
Major triad . . . . . . . . . . . . . . (32)
Conversion between frequency and pitch (32)
More additive synthesis . . . . . . . (33)
Exercises . . . . . . . . . . . . . . . . . . (35)
Wavetables and samplers (37)
2.1 The Wavetable Oscillator . . . . . . (39)
2.2 Sampling . . . . . . . . . . . . . . . (43)
2.3 Enveloping samplers . . . . . . . . . (45)
2.4 Timbre stretching . . . . . . . . . . . (49)
2.5 Interpolation . . . . . . . . . . . . . (53)
2.6 Examples . . . . . . . . . . . . . . . (57)
2.6.1 wavetable oscillator . . . . . (57)
2.6.2 wavetable lookup in general . (58)
2.6.3 using a wavetable as a sampler (60)
2.6.4 looping samplers . . . . . . . (62)
2.6.5 Overlapping sample looper . (64)
2.6.6 Automatic read point precession (66)
iii (8)
Audio and control computations (69)
3.1 The sampling theorem . . . . . . (69)
3.2 Control . . . . . . . . . . . . . . (71)
3.3 Control streams . . . . . . . . . . (73)
3.4 Converting from audio signals to numeric control streams (77)
3.5 Control streams in block diagrams (78)
3.6 Event detection . . . . . . . . . . (79)
3.7 Control computation using audio signals directly (81)
3.8 Operations on control streams . . (83)
3.9 Control operations in Pd . . . . . (85)
3.10 Examples . . . . . . . . . . . . . (87)
3.10.1 Sampling and foldover . . (87)
3.10.2 Converting controls to signals (89)
3.10.3 Non-looping sample player . (90)
3.10.4 Signals to controls . . . . (92)
3.10.5 Analog-style sequencer . . (92)
3.10.6 MIDI-style synthesizer . . (94)
Automation and voice management (97)
4.1 Envelope Generators . . . . . . . (97)
4.2 Linear and Curved Amplitude Shapes (100)
4.3 Continuous and discontinuous control changes . (102)
4.3.1 Muting . . . . . . . . . . (103)
4.3.2 Switch-and-ramp . . . . . (104)
4.4 Polyphony . . . . . . . . . . . . . (106)
4.5 Voice allocation . . . . . . . . . . (106)
4.6 Voice tags . . . . . . . . . . . . . (107)
4.7 Encapsulation in Pd . . . . . . . (110)
4.8 Examples . . . . . . . . . . . . . (111)
4.8.1 ADSR envelope generator (111)
4.8.2 Transfer functions for amplitude control (114)
4.8.3 Additive synthesis: Rissets bell . (115)
4.8.4 Additive synthesis: spectral envelope control (118)
4.8.5 Polyphonic synthesis: sampler . (121)
Modulation (127)
5.1 Taxonomy of spectra . . . . . . . (127)
5.2 Multiplying audio signals . . . . (130)
5.3 Waveshaping . . . . . . . . . . . (134)
5.4 Frequency and phase modulation (140)
5.5 Examples . . . . . . . . . . . . . (143)
5.5.1 Ring modulation and spectra (143)
5.5.2 Octave divider and formant adder (145)
5.5.3 Waveshaping and difference tones . (146)
5.5.4 Waveshaping using Chebychev polynomials (147)
5.5.5 Waveshaping using an exponential function (148)
5.5.6 Sinusoidal waveshaping: evenness and oddness (149)
5.5.7 Phase modulation and FM . . . . . . . . . . (151)
Designer spectra (155)
6.1 Carrier/modulator model . . . . . . . . . . . . . . . (156)
6.2 Pulse trains . . . . . . . . . . . . . . . . . . . . . . . (159)
6.2.1 Pulse trains via waveshaping . . . . . . . . . (159)
6.2.2 Pulse trains via wavetable stretching . . . . . (160)
6.2.3 Resulting spectra . . . . . . . . . . . . . . . . (160)
6.3 Movable ring modulation . . . . . . . . . . . . . . . (164)
6.4 Phase-aligned formant (PAF) generator . . . . . . . (166)
6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . (171)
6.5.1 Wavetable pulse train . . . . . . . . . . . . . (171)
6.5.2 Simple formant generator . . . . . . . . . . . (174)
6.5.3 Two-cosine carrier signal . . . . . . . . . . . . (175)
6.5.4 The PAF generator . . . . . . . . . . . . . . . (176)
6.5.5 Stretched wavetables . . . . . . . . . . . . . . (180)
Time shifts (181)
7.1 Complex numbers . . . . . . . . . . . . . . . . . . . (182)
7.1.1 Sinusoids as geometric series . . . . . . . . . (184)
7.2 Time shifts and phase changes . . . . . . . . . . . . (186)
7.3 Delay networks . . . . . . . . . . . . . . . . . . . . . (186)
7.4 Recirculating delay networks . . . . . . . . . . . . . (191)
7.5 Power conservation and complex delay networks . . (195)
7.6 Artificial reverberation . . . . . . . . . . . . . . . . . (200)
7.6.1 Controlling reverberators . . . . . . . . . . . (202)
7.7 Variable and fractional shifts . . . . . . . . . . . . . (204)
7.8 Accuracy and frequency response of interpolating delay lines (207)
7.9 Pitch shifting . . . . . . . . . . . . . . . . . . . . . . (208)
7.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . (214)
7.10.1 Fixed, noninterpolating delay line . . . . . . (214)
7.10.2 Recirculating comb filter . . . . . . . . . . . . (215)
7.10.3 Variable delay line . . . . . . . . . . . . . . . (216)
7.10.4 Order of execution and lower limits on delay times (217)
7.10.5 Order of execution in non-recirculating delay lines (219)
7.10.6 Non-recirculating comb filter as octave doubler (221)
7.10.7 Time-varying complex comb filter: shakers . (222)
7.10.8 Reverberator . . . . . . . . . . . . . . . . . . (224)
7.10.9 Pitch shifter . . . . . . . . . . . . . . . . . . . (224)
7.10.10Exercises . . . . . . . . . . . . . . . . . . . . (227)
Filters (229)
8.1 Taxonomy of filters . . (230)
8.1.1 Low-pass and high-pass filters . (230)
8.1.2 Band-pass and stop-band filters . (232)
8.1.3 Equalizing filters (232)
8.2 Designing filters . . . . (235)
8.2.1 Elementary non-recirculating filter (235)
8.2.2 Non-recirculating filter, second form (236)
8.2.3 Elementary recirculating filter . (239)
8.2.4 Compound filters (239)
8.2.5 Real outputs from complex filters . (240)
8.3 Designing filters . . . . (242)
8.3.1 One-pole low-pass filter (242)
8.3.2 One-pole, one-zero high-pass filter (243)
8.3.3 Shelving filter . (244)
8.3.4 Band-pass filter . (246)
8.3.5 Peaking and band-stop filter (246)
8.3.6 Butterworth filters (247)
8.3.7 Stretching the unit circle with rational functions (249)
8.3.8 Butterworth band-pass filter (252)
8.3.9 Time-varying coefficients (253)
8.3.10 Impulse responses of recirculating filters (255)
8.3.11 All-pass filters (255)
8.4 Applications . . . . . . (258)
8.4.1 Subtractive synthesis . (258)
8.4.2 Envelope following (258)
8.4.3 Single Sideband Modulation . (261)
8.5 Examples . . . . . . . (263)
8.5.1 Prefabricated low-, high-, and band-pass filters (263)
8.5.2 Prefabricated time-variable band-pass filter (264)
8.5.3 Envelope followers (266)
8.5.4 Single sideband modulation (266)
8.5.5 Using elementary filters directly: (269)
8.5.6 Making and using all-pass filters (269)
Fourier analysis and resynthesis (273)
9.1 Fourier analysis of periodic signals (273)
9.1.1 Fourier transform as additive synthesis . (275)
9.1.2 Periodicity of the Fourier transform (275)
9.2 Properties of Fourier transforms (275)
9.2.1 Fourier transform of DC . (276)
9.2.2 Shifts and phase changes (277)
9.2.3 Fourier transform of a sinusoid (279)
9.3 Fourier analysis of non-periodic signals . (280)
9.4 Fourier analysis and reconstruction of audio signals . (283)
9.4.1 Narrow-band companding (285)
9.4.2 Timbre stamping (classical vocoder) . (287)
Phase . . . . . . . . . . . . . . . . . . . . . . (289)
9.5.1 Phase relationships between channels . (293)
Phase bashing . . . . . . . . . . . . . . . . . . (294)
Examples . . . . . . . . . . . . . . . . . . . . (296)
10 Classical waveforms (305)
Symmetries and Fourier series . . . . . . . . . (307)
10.1.1 Sawtooth waves and symmetry . . . . (308)
Decomposing the classical waveforms into sawtooth and parabolic (8)
waves . . . . . . . . . . . . . . . . . . . . . . (310)
Fourier series of the elementary waveforms . . (312)
Predicting and controlling foldover . . . . . . (317)
10.4.1 Oversampling . . . . . . . . . . . . . . (317)
10.4.2 Sneaky triangle waves . . . . . . . . . (318)
10.4.3 Transition splicing . . . . . . . . . . . (319)
Examples . . . . . . . . . . . . . . . . . . . . (322)