The Vacuum Interrupter: Theory, Design, and Application

دانلود کتاب The Vacuum Interrupter: Theory, Design, and Application

43000 تومان موجود

کتاب قطع کننده خلاء: تئوری، طراحی و کاربرد نسخه زبان اصلی

دانلود کتاب قطع کننده خلاء: تئوری، طراحی و کاربرد بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 10


توضیحاتی در مورد کتاب The Vacuum Interrupter: Theory, Design, and Application

نام کتاب : The Vacuum Interrupter: Theory, Design, and Application
عنوان ترجمه شده به فارسی : قطع کننده خلاء: تئوری، طراحی و کاربرد
سری :
نویسندگان :
ناشر :
سال نشر :
تعداد صفحات : 667
ISBN (شابک) : 2020942082 , 9780429298912
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 22 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover
Half Title
Title Page
Copyright Page
Dedication Page
Table of Contents
Preface and Acknowledgments for the First Edition
Preface and Acknowledgments for the Second Edition
Author
Introduction
Part 1: Vacuum Interrupter Theory and Design
Chapter 1 High Voltage Vacuum Interrupter Design
1.1 Introduction
1.2 The External Design
1.2.1 Electrical Breakdown in Gas
1.2.2 Creepage Distance
1.2.3 Insulating Ambients and Encapsulation
1.3 Electrical Breakdown in Vacuum
1.3.1 Introduction
1.3.2 The Electric Field
1.3.2.1 The Microscopic Enhancement Factor (βm)
1.3.2.2 The Geometric Enhancement Factor (βg)
1.3.3 Pre-Breakdown Effects
1.3.3.1 Field Emission Current
1.3.3.2 Anode Phenomena
1.3.3.3 Microparticles
1.3.3.4 Microdischarges
1.3.4 Vacuum Breakdown and the Transition to the Vacuum Arc
1.3.5 The Transition to a Self-Sustaining Vacuum Arc
1.3.6 Time to Breakdown
1.3.7 Conditioning
1.3.7.1 Spark Conditioning Using a High Voltage ac Power Supply
1.3.7.2 Spark Conditioning Using a High Voltage Pulse
1.3.7.3 Current Conditioning
1.3.7.4 Other Conditioning Processes
1.3.8 Puncture
1.3.9 Deconditioning
1.4 Internal Vacuum Interrupter Design
1.4.1 The Control of the Geometric Enhancement Factor, ßg
1.4.2 Breakdown of Multiple Vacuum Interrupters in Series for Contact Gaps Greater Than 2mm
1.4.3 Voltage Wave Shapes and Vacuum Breakdown in a Vacuum Interrupter
1.4.4 Impulse Testing of Vacuum Interrupters
1.4.5 Testing for High Altitude
1.5 X-Ray Emission
1.6 Arc Initiation When Closing a Vacuum Interrupter
References
Chapter 2 The Vacuum Arc
2.1 The Closed Contact
2.1.1 Making Contact, Contact Area, and Contact Resistance
2.1.2 Calculation of Contact Resistance
2.1.2.1 The Real Area of Contact a Small Disk of Radius “a”
2.1.3 Contact Resistance and Contact Temperature
2.1.3.1 The Calculation of Contact Temperature
2.1.4 Blow-Off Force
2.1.4.1 Butt Contacts
2.1.4.2 Contact Interface Melting During Blow-Off
2.2 The Formation of the Vacuum Arc during Contact Opening
2.3 The Diffuse Vacuum Arc
2.3.1 Cathode Spots
2.3.2 The Plasma between the Cathode Spot and the Anode
2.3.3 Current Chop
2.3.4 The Formation of the Low-Current and High-Current Anode Spot
2.4 The Columnar Vacuum Arc
2.5 The Transition Vacuum Arc
2.6 The Interaction of the Vacuum Arc and a Transverse Magnetic Field
2.6.1 The Diffuse Vacuum Arc and a Transverse Magnetic Field
2.6.2 The Columnar Vacuum Arc and a Transverse Magnetic Field
2.7 The Vacuum Arc and an Axial Magnetic Field
2.7.1 The Low-Current Vacuum Arc in an Axial Magnetic Field
2.7.2 The High-Current Vacuum Arc in an Axial Magnetic Field
2.8 Overview and Review of the Three Forms of Anode Spot
References
Chapter 3 The Materials, Design, and Manufacture of the Vacuum Interrupter
3.1 Introduction
3.2 Vacuum Interrupter Contact Materials
3.2.1 Introduction
3.2.2 Copper and Copper-Based Contact Materials That Have Been Developed Following the Initial Experiments on High Current Vacuum Arcs Using Copper Contacts
3.2.3 Refractory Metals Plus a Good Conductor
3.2.4 Semi-Refractory Metals Plus a Good Conductor
3.2.5 Copper Chromium Materials Plus an Additive
3.2.6 Chopping Current
3.2.7 Summary
3.3 The Contact Structures for the Vacuum Interrupter
3.3.1 Introduction
3.3.2 Disc- or Butt-Shaped Contacts
3.3.3 Contacts to Force the Motion of the High Current, Columnar Vacuum Arc
3.3.4 Contacts to Force the High Current, Columnar Arc into the Diffuse Mode
3.3.5 Summary
3.4 Other Vacuum Interrupter Design Features
3.4.1 The Insulating Body
3.4.2 The Shield
3.4.3 The Bellows
3.5 Vacuum Interrupter Manufacture
3.5.1 Assembly
3.5.2 Testing and Conditioning
3.5.3 Summary
References
Part 2: Vacuum Interrupter Application
Chapter 4 General Aspects of Vacuum Interrupter Application
4.1 Introduction
4.2 The Interruption of ac Circuits
4.2.1 The Interruption of the Diffuse Vacuum Arc for ac Currents Less Than 2 kA (rms.) with a Fully Open Contact Gap
4.2.2 The Interruption of the Vacuum Arc for AC Currents Greater than 2 kA (rms.)
4.2.3 The Interruption of High Current Vacuum Arcs
4.3 Interruption of ac Circuits When the Contacts Open Just Before Current Zero
4.3.1 Low Current Vacuum Arcs
4.3.1.1 Low Current Interruption of Inductive Circuits
4.3.1.2 Low Current Interruption of Capacitive Circuits
4.3.2 High Current Interruption
4.4 Contact Welding
4.4.1 Introduction
4.4.2 Welding of Closed Contacts
4.4.2.1 Cold Welding and Diffusion Welding
4.4.2.2 Welding Caused by the Passage of High Current
4.4.3 A Comparison of the Calculated “iW” with Experimental Values
4.4.3.1 Simple Butt Contacts with One Region of Contact and a Short Current Pulse
4.4.3.2 Simple Butt Contacts with More Than One Region of Contact and a Short Current Pulse
4.4.3.3 Axial Magnetic, Large Area, Vacuum Interrupter Contacts
4.4.4 The Model to Determine the Threshold Welding Current for Closed Contacts with “n” Regions of Contact for Passage of Current of 1 to 4 Seconds
4.4.4.1 Closed Large Area Vacuum Interrupter Contacts Passing Fault Currents from 1 to 4 Seconds
4.4.5 Welding of Contacts That Slide
4.4.6 Welding when Contacts Close an Electrical Circuit
REFERENCES
Chapter 5 Application of the Vacuum Interrupter for Switching Load Currents
5.1 Introduction
5.2 Load Current Switching
5.2.1 Switches Used at Distribution Voltages
5.2.2 Switches Used at Transmission Voltages
5.3 Switching Inductive Circuits
5.3.1 Voltage Surges When Closing an Inductive Circuit
5.3.2 Voltage Surges When Opening an Inductive Circuit
5.3.3 Surge Protection
5.3.4 Switching Three-Phase Inductive Circuits: Virtual Current Chopping
5.3.5 Transformer Switching
5.3.5.1 Tap Changers
5.3.5.2 Switching Off Unloaded Transformers
5.3.5.3 Switching Off an Unloaded Transformer’s In-Rush Current
5.3.5.4 Switching Off Loaded Transformers
5.4 Vacuum Contactors
5.4.1 Introduction
5.4.2 Solenoid Operation
5.4.3 Sizing the Contact
5.4.4 The Shield
5.4.5 The Contact Material
5.5 Switching Capacitor Circuits
5.5.1 Inserting a Capacitor Bank
5.5.2 Disconnecting a Capacitor Bank
5.5.3 Switching Three-Phase Capacitor Banks
5.5.4 The Capacitor Switch Recovery Voltage, Late Restrikes, and NSDDs
5.5.5 Switching Cables and Overhead Lines
5.6 Vacuum Interrupters for Circuit Switching, Circuit Isolation, and Circuit Grounding
5.6.1 Background
5.6.2 Vacuum Interrupter Design Concepts for Load Switching and for Isolation
5.6.3 Vacuum Interrupter Design for Switching and Grounding
5.6.4 Vacuum Interrupter Design for Fault Protection, Isolation, and Grounding
5.7 Summary
References
Chapter 6 Circuit Protection, Vacuum Circuit Breakers, and Reclosers
6.1 Introduction
6.2 Load Currents
6.3 Short Circuit Currents
6.3.1 Introduction
6.3.2 The Short Circuit Current and Asymmetry
6.3.3 The Transient Recovery Voltage (TRV), for a Terminal Fault
6.3.3.1 First Pole-to-Clear Factor
6.3.4 The Terminal Fault Interruption Performance of Vacuum Interrupters
6.3.5 The Transient Recovery Voltage for Short Line Faults (SLF)
6.3.6 TRV from Transformer Secondary Faults
6.4 Late Breakdowns and Non-Sustained Disruptive Discharges (NSDDs)
6.5 Vacuum Circuit Breaker Design
6.5.1 Introduction
6.5.2 Closed Contacts
6.5.3 Mechanism Design
6.5.4 The Vacuum Interrupter Mounting and Insulation
6.5.5 The Vacuum Circuit Breaker’s Electrical Life
6.6 Vacuum Circuit Breaker Testing and Certification
6.6.1 Developmental Testing of the Vacuum Interrupter
6.6.2 Certification Testing at an Independent High-Power Testing Laboratory
6.6.3 Fault Current Endurance Testing
6.7 Vacuum Circuit Breakers for Capacitor Switching, Cable and Line Switching, and Motor Switching
6.7.1 Introduction
6.7.2 Capacitor Switching
6.7.2.1 Capacitor Switching and NSDDs
6.7.3 Cable Switching and Line Dropping
6.7.4 Motor Switching
6.8 Application of Vacuum Circuit Breakers for Distribution Circuits (4.76 kV to 40.5 kV)
6.8.1 Indoor Switchgear
6.8.2 Outdoor Circuit Breakers
6.8.3 Vacuum Reclosers
6.8.4 The Ring Main Unit (RMU) for Secondary Distribution
6.8.5 Pad-Mount Secondary Distribution Systems
6.8.6 The Generator Vacuum Circuit Breaker
6.8.6.1 High Continuous Currents
6.8.6.2 Transformer/System Fed Faults
6.8.6.3 Generator Fed Faults
6.8.6.4 Out-of-Phase Switching
6.8.7 Transportation Circuit Breakers
6.8.7.1 Interrupting Fault Currents at Frequencies Less Than and Greater Than 50/60 Hz
6.8.8 Switching Electric Arc Furnaces (EAF)
6.9 Vacuum Interrupters in Series
6.10 Vacuum Interrupters for Subtransmission and Transmission Systems
6.11 Switching dc Circuits Using Vacuum Interrupters
6.11.1 DC Interruption Using the Natural Vacuum Arc Instability
6.11.2 DC Current Interruption Using an External Magnetic Field Pulse
6.11.3 Switching High Voltage DC Transmission Circuits Using a Current Counter Pulse
6.12 Development of Vacuum Interrupters for Low Voltage (< 1000V) Circuit Breakers
6.13 Concluding Summary
References
Author Index
Subject Index




پست ها تصادفی