توضیحاتی در مورد کتاب Thermal Spray Fundamentals: From Powder to Part
نام کتاب : Thermal Spray Fundamentals: From Powder to Part
ویرایش : 2
عنوان ترجمه شده به فارسی : اصول اسپری حرارتی: از پودر تا قطعه
سری :
نویسندگان : Maher I. Boulos, Pierre L. Fauchais, Joachim V.R. Heberlein
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 1147
ISBN (شابک) : 3030706710 , 9783030706715
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 78 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Foreword
Preface
Preface (First Edition)
Contents
Part I: Basic Concepts
Chapter 1: Introduction to Thermal Spray
1.1 Introduction
1.2 Needs for Coatings
1.3 Thermal Spraying
1.4 Classification of Thermal Spray Processes
1.5 Historical Evolution of Thermal Spray Technology
1.6 Thermal Spray Applications
1.7 Overview of Book Content
References
Chapter 2: Overview of Surface Modification Technologies
2.1 Introduction
2.2 Coating Deposited at the Atomic Level
2.2.1 Plating
2.2.1.1 Electroless Plating
2.2.1.2 Electroplating
2.2.2 Physical Vapor Deposition
2.2.2.1 Evaporation by Resistive Heating
2.2.2.2 Electron and Ion Beam Vacuum Evaporator/Coating Systems
2.2.2.3 Sputtering
2.2.2.4 Pulsed Laser Deposition
2.2.3 Chemical Vapor Deposition
2.2.3.1 Low-Pressure Chemical Vapor Deposition
2.2.3.2 Plasma-Enhanced Chemical Vapor Deposition
2.2.3.3 Laser-Enhanced Chemical Vapor Deposition
2.2.4 Thin Film Coating Technologies in Industry
2.3 Thermal-Sprayed Coatings
2.3.1 Basic Concepts
2.3.1.1 Combustion-Based Processes
2.3.1.2 Plasma-Based Processes
2.3.2 Energetic Gas Flow Generation
2.3.2.1 Cold Spray
2.3.2.2 Flame Spray
2.3.2.3 Plasma Spraying
2.3.2.4 Plasma-Transferred Arc Deposition
2.3.3 Material Preparation and Injection
2.3.3.1 Powder Injection
2.3.3.2 Wire, Rod, or Cord Injection
2.3.3.3 Liquid Injection
2.3.4 Substrate Preparation
2.3.5 Coating Formation
2.3.6 Residual Stresses
2.3.7 Brief Descriptions of Thermal Spray Applications
2.4 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 3: Fundamentals of Combustion and Thermal Plasmas
3.1 Introduction
3.2 Combustion
3.2.1 Description of Combustion Processes
3.2.2 Combustion at Equilibrium
3.2.3 Combustion Kinetics
3.2.3.1 One-Step Reactions
3.2.3.2 Simultaneous Interdependent and Chain Reactions
3.2.3.3 Criterion for Explosion
3.2.4 Combustion (Deflagrations) or Detonations
3.2.4.1 Combustion (Deflagration)
3.2.4.2 Detonation
3.3 Thermal Plasmas for Spraying
3.3.1 Comparison of Thermal Plasma and Combustion Spraying
3.3.2 Definition
3.3.3 Plasma Composition
3.3.4 Thermodynamic Properties
3.3.5 Transport Properties
3.3.5.1 Electrical Conductivity
3.3.5.2 Molecular Viscosity
3.3.5.3 Thermal Conductivity
3.4 Basic Concepts in Modeling of Plasma Spraying Processes
3.4.1 Introduction
3.4.2 Conservation Equations for the Modeling of Plasma Flows
3.4.2.1 Continuity Equations
3.4.2.2 Momentum Equations
3.4.2.3 Energy Equations
3.4.2.4 Electromagnetic Field Equations
3.4.2.5 Laminar or Turbulent Flows
3.4.3 Gas Composition, Thermodynamic, and Transport Properties
3.4.3.1 Gas Composition
3.4.3.2 Thermodynamic Properties
3.4.3.3 Transport Properties
3.4.4 Examples of DC Torch Modeling Results
3.5 Summary and Conclusions
Nomenclature
Latin Alphabet
Mathematical Symbols
Greek Alphabet
References
Chapter 4: Plasma-Particle Momentum and Heat Transfer
4.1 Introduction
4.2 Overview of Powder Characteristics
4.2.1 Individual Particle Size and Morphology
4.2.2 Particle Size-Distribution
4.3 Plasma-Particle Momentum Transfer
4.3.1 Flow around Single Sphere and Drag Coefficient
4.3.2 Corrections to the Drag Coefficient
4.3.2.1 Effect of the Temperature Gradients
4.3.2.2 Effect of Particle Shape
4.3.2.3 Non-continuum Effect
4.3.2.4 Effect of Particle Charging
4.4 Plasma-Particle Heat Transfer
4.4.1 Heat Transfer Coefficient
4.4.2 Corrections to the Heat Transfer Coefficient
4.4.2.1 Effect of the Temperature Gradients
4.4.2.2 Non-continuum Effect
4.4.3 Radiation Energy Losses from the Surface of the Particle
4.5 Transient Heating and Melting of a Particle
4.5.1 Spherical Particle with Infinite Thermal Conductivity
4.5.2 Effect of Internal Heat Conduction
4.5.3 The Moving Boundary Problem
4.5.4 Transient Heating and Melting of Porous Spherical Particle
4.6 Particle Vaporization Under Plasma Conditions
4.6.1 Basic Mechanism of Particle Vaporization
4.6.2 Effect of Vaporization on Heat Transfer
4.6.3 Effect of Radiation on Particle Vaporization
4.6.4 Effect of Mass Transfer and Chemical Reactions
4.7 Chemical Reactions and Melt Circulation
4.7.1 Diffusion Controlled Reaction
4.7.2 Reactions Taking Place Between Condensed Phases
4.7.3 Reactions Controlled by Convection Within Liquid Phase
4.7.4 Nano- and Micrometer-Sized Particles and Coating Structures
4.8 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 5: Gas and Particle Dynamics in Thermal Spray
5.1 Introduction
5.2 Particle Injection in Plasma Spray
5.2.1 Design Considerations of Particle Injection Systems
5.2.2 Effect of Carrier Gas
5.3 Suspension or Solution Injection into Plasma Flows
5.3.1 Gas Atomization
5.3.2 Mechanical Atomization
5.3.2.1 Liquid Penetration into the Plasma Flow
5.3.2.2 Liquid Fragmentation
5.3.2.3 Droplets Fragmentation and Vaporization
5.3.2.4 Influence of Arc Root Fluctuations
5.3.3 Cooling of Plasma Flow by the Liquid
5.4 Particles and Droplets in Combustion and Thermal Plasmas
5.4.1 Flow and Temperature Fields in DC Plasma Jets
5.4.2 Particle Trajectories in DC Plasma Spraying
5.4.3 Flow and Temperature Fields in RF Induction Plasmas
5.4.4 Particle Velocity Distributions in RF Plasma Spraying
5.5 Particle Trajectory and Temperature History
5.5.1 Model Formulation
5.5.2 Single Particles Motion in Combustion or Plasma Stream
5.5.2.1 Equations of Motion
5.5.2.2 In-Flight Particle Heating, Melting, and Evaporation
5.5.3 Particle Trajectory in Combustion and DC Plasmas
5.5.3.1 Influence of the Injection Conditions
5.5.3.2 Optimization of the Injection
5.5.3.3 Influence of Plasma Jet Fluctuations
5.5.4 Trajectory Corrections Due to Various Effects
5.5.4.1 Effect of Temperature Gradient
5.5.4.2 Effect of Rarefaction and Vaporization
5.5.4.3 Effect of Turbulence
5.5.4.4 Thermophoresis Effect
5.5.4.5 Other Effects
5.5.5 Particle Trajectory in Induction Plasmas
5.6 Plasma-Particle Interactions Under Dense Loading Conditions
5.7 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Part II: Thermal Spray Technologies
Chapter 6: Cold Spray
6.1 Introduction
6.2 Overview of Cold Spray Technologies
6.2.1 Conventional Cold Spray
6.2.2 Kinetic Spray
6.2.3 Pulsed-Gas Dynamic Spray
6.2.4 Low Pressure Cold Spray
6.2.5 Vacuum Cold Spray
6.2.6 Laser-Assisted Cold-Spray
6.3 Gas Dynamics in Cold Spray Process
6.3.1 Isentropic Expansion of the Flow
6.3.2 Compressible Flow Models
6.3.3 Nozzle Design
6.4 Coating Formation
6.4.1 Induction Time
6.4.2 Particle and Substrate Deformation
6.4.3 Critical Impact Velocity
6.4.4 Material and Substrate Compatibility
6.4.5 Particle Shock Consolidation
6.4.6 Coating Buildup
6.4.7 Deposition Efficiency
6.5 Deposition Parameters
6.5.1 Spray Gases
6.5.2 Spray Powders
6.5.2.1 General Remarks
6.5.2.2 Influence of Particle Diameter, Density, and Specific Heat
6.5.2.3 Particle Temperature
6.5.2.4 Composite Materials
6.5.2.5 Metal-Ceramic Blends
6.5.2.6 Metal-Cladded Composite Particles
6.5.2.7 Nano Composites
6.5.3 Substrate
6.5.3.1 Substrate Roughness
6.5.3.2 Spray Distance
6.5.3.3 Spray Angle
6.5.3.4 Substrate Oxidation
6.5.3.5 Laser Preheating of the Substrate
6.5.4 Nozzle Design and Powder Injection
6.5.4.1 Carrier Gas
6.5.4.2 Critical Velocity
6.5.4.3 Particle Loading Effect
6.6 Coating Materials and Process Applications
6.6.1 General Remarks
6.6.2 Metals
6.6.2.1 Aluminum
6.6.2.2 Copper
6.6.2.3 Nickel
6.6.2.4 Selective Galvanizing
6.6.2.5 Superalloys
6.6.2.6 Titanium and TiO2 and TiN
6.6.2.7 Iron and Steel
6.6.2.8 Tantalum
6.6.2.9 Pure Silicon
6.6.2.10 Pure Silver
6.6.2.11 Metallic Coatings on Polymers
6.6.2.12 Complex Alloys
6.6.2.13 Submicronic Ceramic Powders
6.6.3 Composites
6.6.3.1 Pure Iron (99.5%) or Stainless Steel (304 L) Reinforced by Diamond
6.6.3.2 Aluminum and Copper
6.6.3.3 Aluminum and Silicon
6.6.3.4 Fabrication of Cermet Coatings
6.6.3.5 Fe-Al Inter-Metallic Compounds
6.6.3.6 Cermets
6.6.3.7 Ceramics
6.7 Immerging Technologies and Applications of Cold Spray
6.7.1 Low Pressure Cold Spray (LPCS)
6.7.2 Additive Manufacturing
6.8 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 7: Combustion Spraying
7.1 Overview of Combustion-Based Spray Technologies
7.2 Flame Spraying
7.2.1 Basic Concepts
7.2.2 Powder Flame Spraying
7.2.2.1 Spray Gun Design and Process Characteristics
7.2.2.2 Applications
7.2.3 Solution Flame Spraying (SFS)
7.2.4 Wire, Rod, and Cord Spraying
7.2.4.1 Spray Gun Design and Process Characteristics
7.2.4.2 Applications
7.3 High-Velocity Flame Spraying
7.3.1 Basic Concepts
7.3.1.1 Spray Gun Design and Process Characteristics
7.3.1.2 High-Power HVOF
7.3.1.3 Evolution of the HVOF Gun Design
7.3.1.4 Gas and Particle Dynamics in HVOF Systems
7.3.2 Powder Spraying Using HVOF/HVAF
7.3.2.1 Particle Temperatures and Velocities
7.3.2.2 Particle Oxidation
7.3.2.3 Coating Formation
7.3.3 Wire Spraying Using HVOF /HVAF
7.3.4 High-Velocity Suspension Flame Spraying (HV-SFS)
7.3.5 Industrial Applications
7.3.5.1 Metals
7.3.5.2 Cermets
7.3.5.3 Ceramics
7.3.5.4 Polymers
7.4 Pulse Detonation Thermal Spray
7.4.1 Basic Concepts
7.4.2 Gas and Particle Dynamics
7.4.3 Coating Formation
7.4.4 Coating Properties
7.4.4.1 Plain Fatigue and Fretting Fatigue
7.4.4.2 Oxidation Resistant Coatings
7.4.4.3 Thermal Barrier Coatings (TBCs)
7.4.4.4 Wear Resistant Coatings
7.4.4.5 Other Cermets
7.4.4.6 Alloys
7.5 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
Subscripts
References
Chapter 8: DC Plasma Spraying, Fundamentals
8.1 Introduction
8.2 Basic Concepts
8.2.1 Cathode
8.2.2 Arc Column
8.2.3 Anode
8.2.4 Arc Stability
8.2.5 Electrode Erosion
8.3 Plasma Torch Design
8.3.1 Gas-Stabilized DC Plasma Torch
8.3.2 Wall-Stabilized DC Plasma Torch
8.3.3 Laminar Plasma Torch
8.3.4 Cascade DC Plasma Torch with Intersegment Gas Injection
8.3.5 Water-Stabilized DC Plasma Torch
8.3.6 Multi-Electrode DC Plasma Torch
8.4 Gas and Particle Dynamics in DC Plasma Spraying
8.4.1 Arc and Plasma Jet Dynamics
8.4.2 Ambient Gas Entrainment by the Plasma Jet
8.4.3 Plasma Jet Characteristics
8.4.3.1 Plasma Torch Operating Parameters
8.4.3.2 Velocity and Temperature Fields
8.4.4 Particle Dynamics in Plasma Flows
8.4.5 Plasma Torch and Spray Process Modeling
8.5 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 9: DC Plasma Spraying, Process Technology
9.1 Introduction
9.2 Atmospheric Plasma Spraying
9.2.1 Atmospheric DC Plasma Spraying Equipments
9.2.2 Plasma Spraying Parameters
9.2.3 Substrate Preparation
9.2.4 Splats and Coating Formation
9.2.4.1 General Remark
9.2.4.2 Splat Formation
9.2.4.3 Coating Adhesion
9.2.4.4 Spray Pattern
9.3 Controlled Atmosphere Plasma Spraying
9.3.1 Ambient Gas Entrainment in DC Plasma Jets
9.3.2 Systems and Operating Conditions
9.4 Vacuum Plasma Spraying
9.4.1 Basic Concepts
9.4.2 Torch Nozzle Design and Gas Dynamics
9.4.3 Coating Microstructure
9.5 Ultra Low-Pressure Plasma Spraying
9.5.1 Basic Concept and Gas Dynamics
9.5.2 Coating Formation
9.6 Plasma Sprayed Materials and Coatings
9.6.1 General Remarks
9.6.2 Oxide Ceramics
9.6.2.1 Alumina
9.6.2.2 Titania and Alumina-Titania Coatings
9.6.2.3 Chromium Oxide
9.6.2.4 Zirconia
9.6.2.5 Other Oxides
9.6.3 Non-Oxide Ceramics
9.6.4 Cermets
9.6.5 Metals or Alloys
9.6.5.1 Vacuum Plasma-Sprayed Metal Coatings
9.6.5.2 Air Plasma-Sprayed Metal Coatings
9.6.6 DC Plasma Spray Applications
9.6.6.1 Abrasive Wear
9.6.6.2 Erosive Wear
9.6.6.3 Friction and Adhesive Wears
9.7 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 10: Induction Plasma Spraying
10.1 Introduction
10.2 Basic Concepts
10.2.1 General Remarks
10.2.2 Energy Coupling Mechanism
10.2.3 Minimum Sustaining Power
10.3 Induction Plasma Torch Design
10.3.1 Flow Stabilization Mechanism
10.3.2 Quartz-Wall Induction Plasma Torches
10.3.3 Segmented Metal Wall Torches
10.3.4 Ceramic Wall Torches
10.3.5 Multi-coil Plasma Torches
10.3.6 DC-RF Hybrid Plasma Torches
10.3.7 RF Power Supply and Energy Balance
10.4 Gas and Particle Dynamics
10.4.1 Electrical and Magnetic Fields
10.4.2 Temperature Fields
10.4.3 Flow Fields
10.4.4 Concentration Fields
10.4.5 Plasma and Particle Dynamics Modeling
10.4.5.1 Flow, Temperature and Concentration Fields Modelling
10.4.5.2 Integrated Electrodynamic System Modelling
10.4.5.3 Induction Plasma Spray Modelling
10.5 Induction Plasma Spraying
10.5.1 Basic System Design
10.5.2 Atmospheric Induction Plasma Spraying
10.5.3 Vacuum Induction Plasma Spraying
10.5.3.1 System Design
10.5.3.2 Splats and Coating Formation
10.5.4 Coatings and Near Net-Shaped Parts
10.5.5 Supersonic Induction Plasma Spraying
10.5.6 Reactive Induction Plasma Spraying
10.5.7 Suspension Induction Plasma Spraying
10.6 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 11: Wire Arc Spraying
11.1 Introduction
11.2 Basic Concepts
11.2.1 General Remarks
11.2.2 Droplet Formation Mechanism
11.2.3 Particle Size Distribution
11.2.4 Splat and Coating Formation
11.2.5 Coating Formation
11.2.6 Fume Formation
11.3 Equipment Design and Operating Parameters
11.3.1 Conventional Twin-Wire Arc Spraying
11.3.2 High-Velocity Twin-Wire Arc Spraying
11.3.3 Single-Wire Arc Spraying
11.4 Gas and Particle Dynamics in Wire Arc Spraying
11.4.1 Particle Velocity and Flux Distribution
11.4.2 Particle Temperature
11.4.3 Process Modeling
11.5 Applications of Wire and Cord Arc Spraying
11.5.1 Corrosion Protection
11.5.2 Wear Protection
11.5.3 High-Temperature Erosion and Oxidation Protections
11.5.3.1 Erosion Protection
11.5.3.2 Oxidation Protection
11.5.3.3 Thermal Shock Resistance
11.5.4 Rebuilding Worn Surfaces and Near Net-Shaped Parts
11.5.5 Metallic Membranes and Rapid Tooling
11.5.6 Electrical and Electronic Industries
11.6 Immerging Wire Arc Spraying Technologies
11.6.1 Antibacterial Coating
11.6.2 Low-Pressure Wire Arc Spraying
11.6.3 Nanostructured Coatings
11.7 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 12: Plasma Transferred Arc Coating
12.1 Introduction
12.2 Basic Concept
12.2.1 General Remarks
12.2.2 Plasma Transferred Arc Deposition
12.2.3 Arc Stabilization Mechanism
12.2.4 Choice of Plasma Gas
12.3 Equipment Design and Operating Parameters
12.3.1 Basic Design Features
12.3.2 Effect of Process Parameter Changes on Coating Properties
12.3.2.1 Pilot Arc Current
12.3.2.2 Transferred Arc Current
12.3.2.3 Torch-to-Substrate Distance
12.3.2.4 Plasma Gas Flow Rate
12.3.2.5 Powder Feed Rate
12.3.2.6 Substrate Material Properties
12.3.2.7 Substrate Motion
12.3.3 Process Modifications and Adaptations
12.3.3.1 Limiting the Use of the Pilot Arc to Arc Ignition
12.3.3.2 Variation of Powder Feed Rate
12.3.3.3 Nitriding of Coating
12.3.3.4 Modulation of Deposition Parameters
12.3.3.5 Pulsed Plasma Additive Manufacturing
12.3.3.6 High Energy PTA
12.3.3.7 PTA Operating in Reverse Polarity Mode
12.3.3.8 Hard Coatings on Magnesium
12.4 Gas and Particle Dynamics in Plasma Transferred Arc Coating
12.4.1 Temperature Distributions in the Arc
12.4.2 Heat Flux to the Substrate
12.4.3 Process Modeling
12.4.3.1 Arc Gas Dynamics and Heat Transfer
12.4.3.2 Melt Pool Modeling
12.5 Coating Materials and Applications
12.5.1 Metals and Alloys
12.5.2 Composite Coatings Doped with Ceramics
12.5.3 Slurry Erosive Wear
12.5.4 Reclamation and Resurfacing
12.6 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Part III: Coating Formation and Characterization
Chapter 13: Powders, Wires, and Cords
13.1 Introduction
13.2 Overview of Powder Characteristics
13.2.1 Individual Particle Properties
13.2.1.1 Particle Size and Morphology
13.2.1.2 Particle Chemical Composition
13.2.1.3 Elements Distribution
13.2.1.4 Crystallographic Structure
13.2.2 Aggregate Powder Properties
13.2.2.1 Powder Sampling
13.2.2.2 Particle Size Distribution
13.2.2.3 Specific Surface Area
13.2.2.4 Flowability
13.2.2.5 Apparent and Tap Density
13.3 Powder Manufacturing Techniques
13.3.1 Mechanical Size Reduction
13.3.1.1 Fusing/Sintering and Crushing
13.3.1.2 Ball Milling
13.3.1.3 Attrition Milling
13.3.1.4 Alternate Crushing and Milling Routes
13.3.2 Powder Consolidation
13.3.2.1 Spray Drying
13.3.2.2 Sintering
13.3.2.3 Mechanical Alloying
13.3.2.4 Cladding
13.3.3 Plasma Spheroidization
13.3.3.1 Basic Concept
13.3.3.2 Modeling Results
13.3.4 Atomization
13.3.4.1 Gas Atomization
13.3.4.2 Water Atomization
13.3.4.3 Plasma Atomization
13.3.5 Powder Chemical Synthesis
13.3.5.1 Sol-Gel Process
13.3.5.2 Self-Propagating High-Temperature Synthesis (SHS)
13.3.6 Nanosized Powder Synthesis
13.3.6.1 Basic Concept
13.3.6.2 Plasma Synthesis of Nanopowders
13.3.7 Polymer Powders
13.3.8 Composite Powders
13.3.8.1 Spray Drying Solutions
13.3.8.2 Integrated Mechanical and Thermal Activation
13.4 Powder and Suspension Feeding
13.4.1 Conventional Powder Classification
13.4.1.1 Sieving
13.4.1.2 Air Classification
13.4.2 Powder Feeding
13.4.2.1 Gravity Fed Hoppers
13.4.2.2 Volumetric Powder Feeders
13.4.2.3 Fluidized-Bed Feeders
13.4.2.4 Powder Feeders for Small Particles
13.4.2.5 Powder Feed Rate Control
13.4.3 Liquid and Suspension Feeding
13.5 Wires and Cords
13.5.1 Manufacturing Routes for Wires and Cords
13.5.2 Wire and Cord Feeders
13.6 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 14: Surface Preparation
14.1 Introduction
14.2 Basic Concepts
14.2.1 Substrate Design
14.2.2 Masking
14.2.3 Surface Roughening
14.2.3.1 Definitions
14.2.3.2 Measurement Techniques
14.3 Cleaning
14.3.1 Solvent Degreasing
14.3.2 Baking
14.3.3 Ultrasonic Cleaning
14.3.4 Wet or Dry Blasting
14.3.5 Acid Pickling
14.3.6 Brushing
14.3.7 Dry Ice Blasting
14.4 Roughening by Grit Blasting
14.4.1 Grit Blasting Equipment
14.4.2 Grit Blasting Nozzles
14.4.3 Grit Material
14.4.3.1 Aluminum Oxide
14.4.3.2 Silicon Carbide Grit
14.4.3.3 Angular Chilled Iron
14.4.3.4 Other Grits
14.4.4 Blasting Parameters
14.4.4.1 Blasting Pressure
14.4.4.2 Blasting Distance
14.4.4.3 Impact Angle
14.4.4.4 Blasting Time
14.4.4.5 Influence of the Grit
14.4.4.6 Effect of Substrate Young´s Modulus
14.4.5 Grit Residue
14.4.5.1 Influence of the Blasting Angle
14.4.5.2 Influence of the Blasting Time
14.4.5.3 Influence of the Grit Size
14.4.5.4 Grit Residue Removal
14.4.6 Grit Wear
14.4.7 Residual Stress Induced by Grit Blasting
14.4.8 Concluding Remarks on Grit Blasting
14.5 High Pressure Water Jet Roughening
14.5.1 Equipment and Description of the Process
14.5.2 Water Jet-Blasting Parameters
14.5.2.1 Water Pressure
14.5.2.2 Blasting Distance
14.5.2.3 Blasting Time
14.5.2.4 Substrate Material
14.5.2.5 Comparison Grit and Water Jet Blasting
14.6 Laser Treatment: Protal Process
14.6.1 Laser Ablation
14.6.2 Protal Experimental Setup
14.6.3 Example of Results
14.6.3.1 Substrate Modifications
14.6.3.2 Splat Formation
14.6.3.3 Coating Adhesion
14.7 Case Studies
14.8 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 15: Conventional Coating Formation
15.1 Introduction
15.2 Basic Concepts
15.2.1 Thermal Spray Parameters
15.2.2 In-Flight Particle Transformations
15.2.2.1 Particle Trajectory, Velocity, and Temperature History
15.2.2.2 Inflight Particle Oxidation
15.2.3 Physical Aspect of Substrate Surfaces
15.2.3.1 Substrate Surface Topography
15.2.3.2 Adsorbates and Condensates
15.2.3.3 Oxide Layer on Substrate and Coating
15.2.4 Splat Adhesion to Substrate
15.2.4.1 Diffusion
15.2.4.2 Crystallographic Structural Matching
15.2.4.3 Chemical Bonding
15.2.4.4 Mechanical Bonding
15.3 Splat Formation
15.3.1 Classification of Splat Formation Mechanisms
15.3.1.1 Splat Formation from Non-molten Solid Particles
15.3.1.2 Splat Formation from Molten Particles
15.3.2 The First Instants of Impact
15.3.3 Flattening of Molten Particle
15.3.3.1 Transition Temperature and Pressure
15.3.3.2 Droplet Flattening Ratio
15.3.3.3 Droplet Cooling and Solidification
15.3.3.4 Splat Fragmentation
15.3.4 Splat Formation of Polymer Particles
15.3.5 Effect of Impact Angle on Splat Formation
15.3.6 Splat Formation on Rough Surfaces
15.3.7 Modeling Studies of Splat Formation
15.4 Coating Formation
15.4.1 Splat Layering
15.4.2 Coating Formation Through Bead Overlapping
15.4.3 Effect of Spray Angle
15.4.4 Polymer Coating Formation
15.4.5 Cold Spray Coating Formation
15.4.6 PTA Coatings/Deposition
15.4.7 Coatings Obtained by Very Low-Pressure Plasma Spray
15.4.7.1 Dense and Thin Coatings
15.4.7.2 Coatings from Vapor Phase
15.5 Substrate and Coating Thermal Management
15.5.1 Splat Cooling
15.5.2 Heat Fluxes Contributing to Substrate and Coating
15.5.3 Cooling Methods
15.5.4 Substrate and Coating Temperature Control
15.6 Stress Control in Thermal Spraying Operations
15.6.1 Residual Stresses
15.6.1.1 Thermal Stresses
Quenching Stress During Splat Formation
Expansion Mismatch Stress
Stress Due to Temperature Gradients
15.6.1.2 Mechanically Induced Stresses
Grit Blasting
Peening Effect
15.6.1.3 Resulting Residual Stress
15.6.1.4 Effect of Residual Stress on Coating Adhesion
15.6.2 Service Stresses
15.6.2.1 Intrinsic Stresses
Thermal Barrier Coatings
Functionally Graded Materials
15.6.2.2 Fatigue of Tribological Coatings
15.6.2.3 Conclusions Relative to Residual Stresses
15.7 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
16: Nanocrystalline and Nanostructured Coatings
16.1 Introduction
16.2 Spraying of Nanocrystalline Materials
16.2.1 Nanocrystalline Coating Formation
16.2.1.1 Amorphous Alloys Containing Phosphorus
16.2.1.2 NiCrB and FeCrB Alloys
16.2.1.3 Iron-Based Amorphous Alloys
16.2.2 Spraying Hypereutectic Alloys
16.3 Spraying of Nanostructured Agglomerated Powders
16.3.1 Powder Characteristics and Coating Formation
16.3.2 Applications
16.3.2.1 Wear-Resistant Coatings
16.3.2.2 Abradable Coatings
16.3.2.3 Thermal Barrier Coatings
16.3.2.4 Biomedical Applications
16.3.2.5 Other Applications
16.3.3 Cold Spraying of Nanostructured Powders
16.3.3.1 Alloys
16.3.3.2 Composites
16.3.3.3 Amorphous Alloys
16.3.4 Spraying of Attrition or Ball Milled Powders
16.3.4.1 Alloys
16.3.4.2 Cermets
WC-Co
Cr3C2-NiCr
Other Cermets
16.4 Suspension and Solution Plasma Spraying
16.4.1 Precursor Preparation
16.4.1.1 Solutions
16.4.1.2 Suspensions
16.4.1.3 Colloidal
16.4.2 Precursor Injection and Fragmentation
16.4.2.1 In-Situ Precursor Atomization
Radial Injection Mode
Axial Injection Mode
16.4.2.2 Precursor Pre-Atomization
Gas-Atomized Liquid/Suspension Injection in DC Plasma Jet
Gas-Atomized Liquid/Suspension Injection in RF Induction Plasmas
16.4.3 Droplets-Spray Stream Interactions
16.4.3.1 Solutions
16.4.3.2 Suspensions
16.4.3.3 Concluding Remarks
16.4.4 Coating Formation
16.4.4.1 Splats
Solutions
Suspensions
16.4.4.2 Spray Beads
Solutions
Suspensions
16.4.5 Spray Parameters and Coating Microstructure
16.4.5.1 Solution
16.4.5.2 Suspension
16.4.6 Present and Potential Applications
16.4.6.1 Biomedical Applications
16.4.6.2 Thermal Barrier Coatings (TBC)
16.4.6.3 Wear-Resistant Coatings
Tungsten Carbide-Cobalt
Alumina
Zircconia-Alumina
Alumina-Zirconia-Yttria Coatings
16.4.6.4 Corrosion Resistant Coatings
SnO2 Layers
Inconel Coatings
Antierosion Coatings
Adhesive Layer on Smooth and Thin Substrate
16.4.6.5 Titania Photo-Catalytic Coatings
16.4.6.6 Solid Oxy-Fuel Cell Components
16.4.6.7 Other Applications
16.5 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 17: Coating Characterizations
17.1 Introduction
17.1.1 Differences Between Coatings and Bulk Materials
17.1.2 Characterization and Testing Methods Used for Coatings
17.1.3 Statistical Methods
17.1.3.1 Normal Distribution
17.1.3.2 Weibull Statistic
17.1.3.3 Variance
17.2 Nondestructive Methods
17.2.1 Visual Inspection
17.2.2 Laser Inspection
17.2.3 Coordinate Measuring Machines
17.2.4 Machine Vision and Robotic Evaluation
17.2.5 Acoustic Emission
17.2.6 Laser Ultrasonic Techniques
17.2.7 Thermography
17.2.8 Coating Thickness
17.3 Metallography and Image Analysis
17.3.1 Coating Preparation
17.3.1.1 Sectioning
(a) Abrasive Cutting
(b) Precision Sectioning
17.3.1.2 Mounting
17.3.1.3 Grinding
17.3.1.4 Polishing
17.3.1.5 Etching
17.3.1.6 Focused Ion Beam
17.3.1.7 Examples of Conventional Coatings Preparation
17.3.2 Microscopy
17.3.2.1 Optical Microscopy
17.3.2.2 Scanning Electron Microscopy
17.3.2.3 Image Analysis
17.3.2.4 Atomic Force Microscopy
17.3.2.5 Transmission Electron Microscopy
17.4 Materials Characterization
17.4.1 X-Ray Fluorescence
17.4.2 Infrared Spectroscopy
17.4.3 Mössbauer Spectroscopy
17.4.4 X-Ray Diffraction
17.4.5 Small-Angle X-Ray Scattering
17.4.6 Small Angle Neutron Scattering
17.4.7 X-Ray Absorption Spectroscopy
17.4.8 Electron Probe X-Ray Microanalysis
17.4.9 Auger Electron Spectroscopy
17.4.10 X-Ray Photoelectron Spectroscopy
17.4.11 Other Techniques
17.5 Void Content and Network Architecture
17.5.1 Archimedean Porosimetry
17.5.2 Mercury Intrusion Porosimetry
17.5.3 Gas Permeation and Pycnometry
17.5.4 Small Angle Neutrons Scattering
17.5.5 Ultra Small Angle X-Ray Scattering
17.5.6 Stereological Protocols (Coupled to Image Analysis)
17.5.7 Electrochemical Impedance Spectroscopy
17.6 Adhesion-Cohesion
17.6.1 Introduction
17.6.2 Simple Tensile Adhesion Test
17.6.3 Other Types of Tensile Tests
17.6.4 Shear Stress
17.6.5 Fracture Mechanics Approach
17.6.6 Bending Toughness Measurements
17.6.7 Indentation Toughness Measurement
17.6.8 Other Methods
17.6.8.1 Double Cantilever Beam Test
17.6.8.2 Double Torsion Test
17.6.8.3 Scratch Test
17.6.8.4 Laser Shock
(a) Coating Adhesion
(b) Splat Adhesion
17.7 Mechanical Properties
17.7.1 Hardness and Indentation Test
17.7.1.1 Hardness
17.7.1.2 Indentation
17.7.2 Young´s Modulus
17.7.2.1 Indentation
17.7.2.2 Four-Points Bending
17.7.2.3 Knoop Hardness
17.7.2.4 Ultrasound Propagation
17.7.3 Toughness
17.7.4 Residual Stress
17.7.4.1 X-Ray Diffraction
17.7.4.2 Neutron Diffraction
17.7.4.3 Material Removal
(a) Layer Removal Method
(b) Hole Drilling Method
17.7.4.4 Bending
17.8 Thermal Properties
17.8.1 Mass Density
17.8.2 Coefficient of Thermal Expansion
17.8.3 Thermal Conductivity and Thermal Diffusivity
17.8.4 Specific Heat at Constant Pressure
17.8.5 Thermal Shock Resistance
17.8.6 Thermal Analysis
17.8.6.1 Phase Changes
17.8.6.2 Reactive Thermal Spraying
17.8.6.3 Oxidation Resistance
17.9 Wear Resistance
17.9.1 Abrasive Wears
17.9.2 Adhesive Wears
17.9.3 Erosive Wear
17.9.4 Surface Fatigue
17.9.5 Corrosive Wears
17.9.6 Fretting
17.10 Corrosion Resistance
17.10.1 General Remarks
17.10.2 Corrosion Characterization
17.10.2.1 Electrochemical Measurements
17.10.2.2 Fog and Salt-Spray Test
17.10.2.3 Molten Salt
17.10.2.4 Oxidation
17.11 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
ASTM Standards
A.1: Adhesion-Cohesion
A.2: Corrosion
A.3: Mechanical Properties
A.4: Materials Characterization
A.5: Metallography and Image Analysis
A.6: Non-destructive Methods
A.7: Statistical Methods
A.8: Thermal Properties
A.9: Void Content and Network Architecture
A.10: Wear
References
Part IV: Process Integration and Industrial Applications
Chapter 18: Thermal Spray Process Integration
18.1 Introduction
18.2 Surface Preparation
18.2.1 Substrate Design Considerations
18.2.2 Surface Cleaning
18.2.3 Masking
18.2.4 Surface Roughening
18.3 Thermal Spray System Design
18.3.1 Spray Torch/Gun
18.3.2 Power Supply
18.3.3 Gas Supply
18.3.4 Feed Material Supply
18.3.5 Spray Gun and Workpiece Manipulators
18.3.6 Control Console
18.3.7 Spray Booth
18.3.8 Exhaust Gas/Air Evacuation and Filter
18.3.9 Cooling Water Chiller and Heat Exchanger
18.4 Examples of Integrated TS Systems
18.4.1 Combustion-Based Spraying
18.4.1.1 Flame Spraying
18.4.1.2 High-Velocity Flame Spraying
18.4.1.3 Pulse Detonation Thermal Spray
18.4.2 Wire Arc Spraying
18.4.3 Atmospheric DC Plasma Spraying
18.4.4 Controlled Atmosphere DC Plasma Spraying
18.4.5 Vacuum DC Plasma Spraying
18.4.6 Ultralow-Pressure Plasma Spraying
18.4.7 RF Induction Plasma Spraying
18.5 Instrumentation and Process Control
18.5.1 Core System Instrumentation
18.5.2 Substrate Diagnostics
18.5.2.1 Substrate Surface Temperature
18.5.2.2 Coating Thickness
18.5.3 Spray Medium Diagnostics
18.5.3.1 Flow Visualization
18.5.3.2 Particle Image Velocimetry
18.5.3.3 Emission Spectroscopy
18.5.3.4 Enthalpy Probe
18.5.4 In-flight Particle Diagnostics
18.5.4.1 Individual Particle Diagnostics
18.5.4.2 Ensemble Particle Diagnostics
18.5.4.3 Individual vs Ensemble Particle Diagnostics
18.5.5 Process Control
18.6 Finishing and Post-treatment of Coatings
18.6.1 Machining (Turning, Milling)
18.6.2 Grinding
18.6.3 Fusion of Self-fluxing Alloys
18.6.4 Heat Treating or Annealing
18.6.5 Hot Isostatic Pressing
18.6.6 Austempering Heat Treatment
18.6.7 Laser Glazing
18.6.8 Sealing
18.6.8.1 Organic Sealants
18.6.8.2 Inorganic Sealants
18.6.9 Spark Plasma Sintering
18.6.10 Peening or Rolling Densification
18.7 Safety and Environmental Hazards
18.7.1 Powders: Respiratory Problems and Explosions
18.7.1.1 Particles and the Pulmonary System
18.7.1.2 Toxicity of Powders
18.7.1.3 Explosiveness of Powders
18.7.2 Gases
18.7.2.1 Gases Used for Spray Processes
18.7.2.2 Gases Resulting from the Spray Process
18.7.2.3 Gas Storage
18.7.3 Prevention and Safety Measures
18.7.3.1 Powders
18.7.3.2 Gases
18.7.4 Other Risks
18.7.4.1 Noise
18.7.4.2 Radiation
18.7.4.3 Thermal Risks
18.7.4.4 Electric Risks
18.7.4.5 Risks Associated with the Use of Robots
18.8 Summary and Conclusions
Nomenclature
Latin Alphabet
Greek Alphabet
References
Chapter 19: Industrial Applications of Thermal Spray Technology
19.1 Introduction
19.2 Comparative Analysis of Thermal Spray Processes
19.2.1 Cold Spraying
19.2.2 Combustion-Based Thermal Spraying
19.2.2.1 Flame Spraying
19.2.2.2 High-Velocity Flame Spraying
19.2.2.3 Detonation-Gun Spraying
19.2.3 Plasma Spraying
19.2.3.1 Atmospheric Plasma Spraying
19.2.3.2 Controlled Atmosphere Plasma Spraying
19.2.3.3 Vacuum Plasma Spraying
19.2.3.4 Ultra-Low-Pressure Plasma Spraying
19.2.3.5 Induction Plasma Spraying
19.2.4 Wire Arc Spraying
19.2.5 Plasma-Transferred Arc Deposition
19.3 Thermally Sprayed Coating Applications
19.3.1 Wear-Resistant Coatings
19.3.1.1 Abrasive Wears
Self-Fluxing Alloys
Cermet Coatings
19.3.1.2 Erosive Wear
19.3.1.3 Friction and Adhesive Wear
Ceramic Materials
Cermets
Metals
Polymers
19.3.1.4 Cavitation Wear
19.3.1.5 Fatigue Wear
Surface Fatigue Wear
Thermal Fatigue Wear
Thermal Shock Fatigue Wear
19.3.1.6 Other Forms of Wear
Wear by Very High Stresses
Wear by Fretting and Fretting-Corrosion
19.3.1.7 Replacement of Hard Chromium
19.3.2 Corrosion- and Oxidation-Resistant Coatings
19.3.2.1 Room Temperature Corrosion
Atmospheric and Marine Corrosion
Chemical or Parachemical Corrosion
19.3.2.2 High-Temperature Corrosion
19.3.2.3 Oxidation
19.3.2.4 Corrosive Wear
Low Temperature
High Temperature
19.3.3 Thermal Barrier Coatings
19.3.4 Electrical and Electronic Coatings
19.3.5 Medical Applications
19.3.6 Clearance Control Coatings
19.3.7 Bond Coatings
19.3.8 Freestanding Spray-Formed Parts
19.3.9 Emerging Thermal Spray Applications
19.3.9.1 Solid Oxide Fuel Cells
19.3.9.2 Sensors
19.3.9.3 Decorative Coatings
19.3.9.4 Spent Nuclear Fuel
19.3.9.5 Combined Cycle Power Plant Combinations
19.3.9.6 Future Nuclear Fusion Reactor
19.4 Thermally Sprayed Coatings by Industry
19.4.1 Aerospace
19.4.2 Land-Based Turbines
19.4.3 Automotive
19.4.4 Land-Based and Marine Applications
19.4.4.1 Sacrificial Coatings
19.4.4.2 Non-sacrificial Coatings
19.4.5 Electrical and Electronics Industry
19.4.6 Medical Applications
19.4.7 Ceramic and Glass Manufacturing
19.4.8 Printing Industry
19.4.9 Pulp and Paper
19.4.10 Metal Processing Industries
19.4.10.1 Components of Furnaces or Boilers
19.4.10.2 Molds
19.4.10.3 Die Casting
19.4.10.4 Entrance and Exit Rolls of Steel Processing Line
19.4.10.5 Galvanized and Aluminized Steel Sheets
19.4.11 Petroleum and Chemical Industries
19.4.12 Electrical Utilities
19.4.12.1 For Fluidized-Bed Combustor Boilers
19.4.12.2 For Coal-Fired Boilers
19.4.13 Textile and Plastic Industries
19.4.14 Polymers
19.4.15 Reclamation
19.4.16 Other Applications
19.5 Thermally Sprayed Coatings by Country
19.5.1 North America
19.5.2 Europe
19.5.3 Japan
19.5.4 China
19.5.5 South Korea
19.5.6 India
19.6 Techno-Economic Analysis
19.6.1 Different Cost Contribution Factors
19.6.2 Direct Cost Factors
19.6.2.1 Cost of Materials
19.6.2.2 Cost of Gases, Electricity, and Consumables
19.6.2.3 Direct Labor Cost
19.6.2.4 Direct Cost for Quality Control, Packing, and Labeling
19.6.3 Indirect or Fixed Cost Factors
19.6.3.1 Capital Investments
19.6.3.2 Other Indirect or Fixed Costs
19.6.4 Few Examples
19.6.4.1 Cost of DC Atmospheric Plasma Spraying of YPSZ
19.6.4.2 MCrAlY Coatings Sprayed Using HPPS and Wire Arc Spray
19.6.4.3 Manual Wire Flame Zn Coating
19.6.4.4 Cost Analysis for NiAl Coatings Using APS Versus WAS
19.6.4.5 Cost Comparison for Hard Chromium Replacement
19.7 Summary and Conclusions
Appendices
Appendix A: Processes and Coating Applications by Industry
Appendix B: Use of the Different Spray Materials
B.1 Metals
B.2 Ceramics
B.3 Cermets
B.4 Abradables
Nomenclature
Latin Alphabet
Greek Alphabet
References
Index