توضیحاتی در مورد کتاب Thermodynamics and Chemistry (2nd edition)
نام کتاب : Thermodynamics and Chemistry (2nd edition)
عنوان ترجمه شده به فارسی : ترمودینامیک و شیمی (ویرایش دوم)
سری :
نویسندگان : Howard Devoe
ناشر : Howard DeVoe
سال نشر : 2010
تعداد صفحات : 525
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover......Page 1
Title page......Page 2
Copyright page......Page 3
Short Contents......Page 4
Contents......Page 6
Biographical Sketches......Page 15
Preface to the Second Edition......Page 16
From the Preface to the First Edition......Page 17
Epigraphs......Page 18
1.1 Units......Page 19
1.1.1 Amount of substance and amount......Page 21
1.2 Quantity Calculus......Page 22
1.3 Dimensional Analysis......Page 24
Problem......Page 26
2.1 The System, Surroundings, and Boundary......Page 27
2.1.1 Extensive and intensive properties......Page 28
2.2.1 Physical states of matter......Page 30
2.2.2 Phase coexistence and phase transitions......Page 31
2.2.3 Fluids......Page 32
2.2.4 The equation of state of a fluid......Page 33
2.2.5 Virial equations of state for pure gases......Page 34
2.3.1 Mass......Page 36
2.3.2 Volume......Page 37
2.3.4 Pressure......Page 38
2.3.5 Temperature......Page 40
2.4.1 State functions and independent variables......Page 45
2.4.2 An example: state functions of a mixture......Page 46
2.4.3 More about independent variables......Page 47
2.4.4 Equilibrium states......Page 48
2.5 Processes and Paths......Page 50
2.6 The Energy of the System......Page 52
2.6.2 Internal energy......Page 53
Problems......Page 55
3.1 Heat, Work, and the First Law......Page 56
3.1.1 The concept of thermodynamic work......Page 57
3.1.3 Heat and work as path functions......Page 59
3.1.4 Heat and heating......Page 61
3.2 Spontaneous, Reversible, and Irreversible Processes......Page 63
3.2.1 Reversible processes......Page 64
3.2.3 Purely mechanical processes......Page 66
3.3.1 Heating and cooling......Page 67
3.3.2 Spontaneous phase transitions......Page 68
3.4.1 Gas in a cylinder-and-piston device......Page 69
3.4.2 Expansion work of a gas......Page 71
3.4.3 Expansion work of an isotropic phase......Page 73
3.5.1 The internal energy of an ideal gas......Page 74
3.5.3 Reversible adiabatic expansion of an ideal gas......Page 75
3.5.4 Indicator diagrams......Page 77
3.5.5 Spontaneous adiabatic expansion or compression......Page 78
3.6 Work in a Gravitational Field......Page 79
3.7 Shaft Work......Page 81
3.7.1 Stirring work......Page 82
3.7.2 The Joule paddle wheel......Page 84
3.8.1 Electrical work in a circuit......Page 86
3.8.3 Electrical work with a galvanic cell......Page 88
3.9 Irreversible Work and Internal Friction......Page 90
3.10 Reversible and Irreversible Processes: Generalities......Page 94
Problems......Page 96
4.1 Types of Processes......Page 101
4.2 Statements of the Second Law......Page 102
4.3.1 Carnot engines and Carnot cycles......Page 105
4.3.2 The equivalence of the Clausius and Kelvin–Planck statements......Page 108
4.3.3 The efficiency of a Carnot engine......Page 110
4.3.4 Thermodynamic temperature......Page 113
4.4.1 The existence of the entropy function......Page 115
4.4.2 Using reversible processes to define the entropy......Page 119
4.4.3 Some properties of the entropy......Page 122
4.5.1 Irreversible adiabatic processes......Page 123
4.5.2 Irreversible processes in general......Page 124
4.6 Applications......Page 125
4.6.3 Spontaneous changes in an isolated system......Page 126
4.6.4 Internal heat flow in an isolated system......Page 127
4.6.6 Adiabatic process with work......Page 128
4.7 Summary......Page 129
4.8 The Statistical Interpretation of Entropy......Page 130
Problems......Page 132
5.1 Total Differential of a Dependent Variable......Page 134
5.2 Total Differential of the Internal Energy......Page 135
5.3 Enthalpy, Helmholtz Energy, and Gibbs Energy......Page 137
5.4 Closed Systems......Page 139
5.5 Open Systems......Page 140
5.6 Expressions for Heat Capacity......Page 142
5.7 Surface Work......Page 143
5.8 Criteria for Spontaneity......Page 144
Problems......Page 147
6.1 The Zero of Entropy......Page 149
6.2.1 Third-law molar entropies......Page 151
6.2.2 Molar entropies from spectroscopic measurements......Page 154
6.2.3 Residual entropy......Page 155
6.3.1 Joule–Thomson expansion......Page 156
6.3.2 Magnetization......Page 158
Problem......Page 161
7.1 Volume Properties......Page 162
7.2 Internal Pressure......Page 164
7.3.1 The relation between C(V,m) and C(p,m)......Page 166
7.3.2 The measurement of heat capacities......Page 167
7.3.3 Typical values......Page 172
7.4 Heating at Constant Volume or Pressure......Page 173
7.5.1 Tables of partial derivatives......Page 175
7.5.2 The Joule–Thomson coefficient......Page 178
7.6.2 Condensed phases......Page 179
7.8 Chemical Potential and Fugacity......Page 180
7.8.1 Gases......Page 181
7.9 Standard Molar Quantities of a Gas......Page 184
Problems......Page 187
8.1.1 Equilibrium conditions......Page 191
8.1.2 Equilibrium in a multiphase system......Page 192
8.1.3 Simple derivation of equilibrium conditions......Page 193
8.1.4 Tall column of gas in a gravitational field......Page 194
8.1.5 The pressure in a liquid droplet......Page 196
8.1.6 The number of independent variables......Page 197
8.2 Phase Diagrams of Pure Substances......Page 198
8.2.1 Features of phase diagrams......Page 199
8.2.2 Two-phase equilibrium......Page 202
8.2.3 The critical point......Page 204
8.2.4 The lever rule......Page 205
8.2.5 Volume properties......Page 208
8.3.1 Molar transition quantities......Page 210
8.3.2 Calorimetric measurement of transition enthalpies......Page 211
8.4.1 Chemical potential surfaces......Page 212
8.4.2 The Clapeyron equation......Page 214
8.4.3 The Clausius–Clapeyron equation......Page 216
Problems......Page 218
9.1.2 Mixtures in general......Page 220
9.1.3 Solutions......Page 221
9.1.4 Binary solutions......Page 222
9.2 Partial Molar Quantities......Page 223
9.2.1 Partial molar volume......Page 224
9.2.2 The total differential of the volume in an open system......Page 226
9.2.3 Evaluation of partial molar volumes in binary mixtures......Page 228
9.2.4 General relations......Page 230
9.2.6 The chemical potential of a species in a mixture......Page 232
9.2.7 Equilibrium conditions in a multiphase, multicomponent system......Page 233
9.2.8 Relations involving partial molar quantities......Page 235
9.3 Gas Mixtures......Page 236
9.3.3 Partial molar quantities in an ideal gas mixture......Page 237
9.3.4 Real gas mixtures......Page 240
9.4.1 Raoult's law......Page 243
9.4.2 Ideal mixtures......Page 245
9.4.3 Partial molar quantities in ideal mixtures......Page 246
9.4.4 Henry's law......Page 247
9.4.5 The ideal-dilute solution......Page 249
9.4.6 Solvent behavior in the ideal-dilute solution......Page 251
9.4.7 Partial molar quantities in an ideal-dilute solution......Page 252
9.5.1 Reference states and standard states......Page 254
9.5.3 Real mixtures......Page 255
9.5.4 Nonideal dilute solutions......Page 257
9.6.1 Activity coefficients from gas fugacities......Page 258
9.6.2 Activity coefficients from the Gibbs–Duhem equation......Page 261
9.6.3 Activity coefficients from osmotic coefficients......Page 262
9.6.4 Fugacity measurements......Page 264
9.7.1 Standard states......Page 266
9.7.2 Activities and composition......Page 268
9.7.3 Pressure factors and pressure......Page 269
9.8.1 Gas mixture in a gravitational field......Page 271
9.8.2 Liquid solution in a centrifuge cell......Page 273
Problems......Page 277
10 Electrolyte Solutions......Page 282
10.1 Single-ion Quantities......Page 283
10.2 Solution of a Symmetrical Electrolyte......Page 285
10.3.1 Solution of a single electrolyte......Page 288
10.3.2 Multisolute solution......Page 289
10.3.3 Incomplete dissociation......Page 290
10.4 The Debye–Hückel Theory......Page 291
10.5 Derivation of the Debye–Hückel Equation......Page 294
10.6 Mean Ionic Activity Coefficients from Osmotic Coefficients......Page 296
Problems......Page 298
11.1 Mixing Processes......Page 299
11.1.2 Ideal mixtures......Page 300
11.1.3 Excess quantities......Page 302
11.1.4 The entropy change to form an ideal gas mixture......Page 303
11.1.5 Molecular model of a liquid mixture......Page 305
11.1.6 Phase separation of a liquid mixture......Page 307
11.2 The Advancement and Molar Reaction Quantities......Page 309
11.2.1 An example: ammonia synthesis......Page 310
11.2.2 Molar reaction quantities in general......Page 312
11.3.1 Molar reaction enthalpy and heat......Page 315
11.3.2 Standard molar enthalpies of reaction and formation......Page 316
11.3.3 Molar reaction heat capacity......Page 318
11.3.4 Effect of temperature on reaction enthalpy......Page 319
11.4.1 Molar enthalpy of solution......Page 320
11.4.2 Enthalpy of dilution......Page 322
11.4.3 Molar enthalpies of solute formation......Page 323
11.4.4 Evaluation of relative partial molar enthalpies......Page 324
11.5.1 The constant-pressure reaction calorimeter......Page 329
11.5.2 The bomb calorimeter......Page 331
11.5.3 Other calorimeters......Page 336
11.6 Adiabatic Flame Temperature......Page 337
11.7.2 Spontaneity and reaction equilibrium......Page 338
11.7.3 General derivation......Page 339
11.7.5 Reactions involving mixtures......Page 340
11.7.6 Reaction in an ideal gas mixture......Page 342
11.8.1 Activities and the definition of K......Page 345
11.8.2 Reaction in a gas phase......Page 348
11.8.3 Reaction in solution......Page 349
11.8.4 Evaluation of K......Page 350
11.9 Effects of Temperature and Pressure on Equilibrium Position......Page 351
Problems......Page 355
12.1.1 Variation of mu(i)/T with temperature......Page 362
12.1.2 Variation of mu(i)o/T with temperature......Page 363
12.1.3 Variation of ln K with temperature......Page 364
12.2 Solvent Chemical Potentials from Phase Equilibria......Page 365
12.2.1 Freezing-point measurements......Page 366
12.2.2 Osmotic-pressure measurements......Page 368
12.3 Binary Mixture in Equilibrium with a Pure Phase......Page 370
12.4 Colligative Properties of a Dilute Solution......Page 371
12.4.1 Freezing-point depression......Page 373
12.4.3 Vapor-pressure lowering......Page 375
12.4.4 Osmotic pressure......Page 376
12.5.1 Freezing points of ideal binary liquid mixtures......Page 377
12.5.2 Solubility of a solid nonelectrolyte......Page 379
12.5.4 Solid compound of mixture components......Page 380
12.5.5 Solubility of a solid electrolyte......Page 383
12.6.2 Solubility of one liquid in another......Page 385
12.7 Membrane Equilibria......Page 388
12.7.2 Equilibrium dialysis......Page 389
12.7.3 Donnan membrane equilibrium......Page 390
12.8.1 Effect of liquid pressure on gas fugacity......Page 393
12.8.2 Effect of liquid composition on gas fugacities......Page 394
12.8.3 The Duhem–Margules equation......Page 398
12.8.4 Gas solubility......Page 399
12.8.5 Effect of temperature and pressure on Henry's law constants......Page 401
12.9 Reaction Equilibria......Page 402
12.10 Evaluation of Standard Molar Quantities......Page 404
Problems......Page 406
13.1 The Gibbs Phase Rule for Multicomponent Systems......Page 412
13.1.2 Species approach to the phase rule......Page 413
13.1.3 Components approach to the phase rule......Page 415
13.1.4 Examples......Page 416
13.2.1 Generalities......Page 419
13.2.2 Solid–liquid systems......Page 420
13.2.3 Partially-miscible liquids......Page 424
13.2.4 Liquid–gas systems with ideal liquid mixtures......Page 425
13.2.5 Liquid–gas systems with nonideal liquid mixtures......Page 427
13.2.6 Solid–gas systems......Page 430
13.2.7 Systems at high pressure......Page 433
13.3 Phase Diagrams: Ternary Systems......Page 435
13.3.1 Three liquids......Page 436
13.3.2 Two solids and a solvent......Page 437
Problems......Page 439
14.1.1 Elements of a galvanic cell......Page 443
14.1.2 Cell diagrams......Page 444
14.1.4 Advancement and charge......Page 445
14.2 Electric Potentials in the Cell......Page 446
14.2.1 Cell potential......Page 447
14.2.2 Measuring the equilibrium cell potential......Page 448
14.2.3 Interfacial potential differences......Page 449
14.3 Molar Reaction Quantities of the Cell Reaction......Page 451
14.3.1 Relation between molar reaction Gibbs energy and equilibrium cell potential......Page 452
14.3.2 Relation between molar reaction Gibbs energies of the cell and the direct reaction......Page 453
14.3.3 Standard molar reaction quantities......Page 454
14.4 The Nernst Equation......Page 456
14.5 Evaluation of the Standard Cell Potential......Page 457
14.6 Standard Electrode Potentials......Page 458
Problems......Page 461
A Definitions of the SI Base Units......Page 464
B Physical Constants......Page 465
C Symbols for Physical Quantities......Page 466
D.1 Physical States......Page 470
D.2 Subscripts for Chemical Processes......Page 471
D.3 Superscripts......Page 472
E.2 Partial Derivatives......Page 473
E.4 Line Integrals......Page 474
F.2 Total Differential......Page 475
F.3 Integration of a Total Differential......Page 477
F.4 Legendre Transforms......Page 478
G Forces, Energy, and Work......Page 480
G.1 Forces between Particles......Page 481
G.2 The System and Surroundings......Page 484
G.3 System Energy Change......Page 486
G.4 Macroscopic Work......Page 487
G.6 The Local Frame and Internal Energy......Page 489
G.8 Center-of-mass Local Frame......Page 493
G.9 Rotating Local Frame......Page 496
G.10 Earth-Fixed Reference Frame......Page 497
H Standard Molar Thermodynamic Properties......Page 498
I Answers to Selected Problems......Page 501
Bibliography......Page 505
B......Page 512
C......Page 513
E......Page 514
F......Page 516
H......Page 517
J......Page 518
M......Page 519
P......Page 520
R......Page 521
S......Page 522
T......Page 523
V......Page 524
Z......Page 525