Thermodynamics ; Fundamental Principles and Applications (UNITEXT for Physics)

دانلود کتاب Thermodynamics ; Fundamental Principles and Applications (UNITEXT for Physics)

46000 تومان موجود

کتاب ترمودینامیک ; اصول و کاربردهای اساسی (UNITEXT برای فیزیک) نسخه زبان اصلی

دانلود کتاب ترمودینامیک ; اصول و کاربردهای اساسی (UNITEXT برای فیزیک) بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Thermodynamics ; Fundamental Principles and Applications (UNITEXT for Physics)

نام کتاب : Thermodynamics ; Fundamental Principles and Applications (UNITEXT for Physics)
ویرایش : 1st ed. 2019
عنوان ترجمه شده به فارسی : ترمودینامیک ; اصول و کاربردهای اساسی (UNITEXT برای فیزیک)
سری : UNITEXT for Physics
نویسندگان : , ,
ناشر : Springer
سال نشر : 2019
تعداد صفحات : 444
ISBN (شابک) : 3030269752 , 9783030269753
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.

توضیحاتی در مورد کتاب :




این کتاب نمای کلی جامعی از ترمودینامیک ارائه می دهد. این به چهار بخش تقسیم می‌شود که بخش اول، خوانندگان را با درک عمیق‌تری از اصول بنیادی ترمودینامیک حالت‌های تعادل و تکامل آن‌ها مجهز می‌کند. بخش دوم این اصول را برای یک سری موقعیت‌های تعمیم‌یافته اعمال می‌کند و کاربردهایی را ارائه می‌کند که هم به خودی خود و هم از نظر نشان دادن اینکه چگونه ترمودینامیک، به عنوان یک نظریه اصل، با زمینه‌های مختلف مرتبط است، جالب هستند. به نوبه خود، بخش سوم بر پیکربندی های غیر تعادلی و پویایی فرآیندهای طبیعی تمرکز دارد. این سیستم‌های ناپیوسته و پیوسته را مورد بحث قرار می‌دهد و تداخل بین فرآیندهای غیرتعادلی و ماهیت حالت‌های ساکن و نوسانات در سیستم‌های ایزوله را برجسته می‌کند. در نهایت، بخش چهارم رابطه بین فیزیک و نظریه اطلاعات را معرفی می‌کند، که مرز جدیدی را در تحقیقات بنیادی تشکیل می‌دهد.

این کتاب شامل تمرین‌های گام به گام، همراه با راه‌حل‌ها، برای کمک به خوانندگان برای به دست آوردن درک کامل‌تر است. از موضوعات، و همچنین دارای یک سری از ضمیمه ها ارائه فرمول های ریاضی مفید است. با انعکاس محتوای دروس دانشگاهی مدرن در زمینه ترمودینامیک، منبع ارزشمندی برای دانشجویان و دانشمندان جوان در زمینه‌های فیزیک، شیمی و مهندسی است.



فهرست مطالب :


Preface Outline of This work Concluding Remark Acknowledgements Contents Acronyms List of Some Useful Constants Part I Formulation of the Theory 1 Macroscopic Systems and Empirical Temperature 1.1 Macroscopic Systems 1.2 Macroscopic Observer 1.3 Thermodynamic State 1.4 The Concept of Empirical Temperature 1.5 The Perception of Hotness and Coldness 1.6 The Empirical Temperature and the Zeroth Principle of Thermodynamics 1.6.1 Equilibrium State 1.6.2 The Zeroth Principle 2 The First Principle of Thermodynamics 2.1 Introduction 2.2 Closed Systems 2.3 Adiabatic Walls and Adiabatic Transformations 2.4 The Definition of Energy 2.4.1 Energy of Familiar Adiabatic Systems 2.5 Definition of Heat (Quantity of) 2.6 Infinitesimal Transformations 2.7 Formulation of the First Principle of Thermodynamics 3 The Second Principle of Thermodynamics 3.1 Introduction 3.2 Natural and Unnatural Processes 3.3 Quasi-static Processes 3.4 Reversible Processes 3.5 Formulation of the Second Principle: Definition of S and T 3.5.1 State Functions 3.5.2 Extensive and Intensive Quantities 3.5.3 Measuring S 3.5.4 The Absolute, or Thermodynamic, Temperature T 3.6 Discontinuous Systems Approximation 3.6.1 Resume 3.7 On the Predictive Power of Thermodynamics 3.8 Efficiency of Thermal Engines 3.9 Carnot Cycles 3.10 On the Determination of the New Scale of Temperature T 3.11 The Carnot Engine and Endoreversible Engines 3.12 Coefficient of Performance (COP) 3.12.1 Refrigerator 3.12.2 Heat Pump 3.13 Availability and Maximum Work 4 The Fundamental Relation and the Thermodynamic Potentials 4.1 Introduction 4.2 The Equilibrium State Postulate for Closed Systems with No Chemical Reactions 4.2.1 Simple Systems 4.3 The Fundamental Relation 4.3.1 The General Case for Open Systems with Variable Composition: The Chemical Potential 4.3.2 Other Thermodynamic Potentials 4.3.3 The Free Energy and Isothermal Processes in Closed Systems 4.3.4 The Enthalpy and Isobaric Processes 4.3.5 The Gibbs Potential and Isothermal and Isobaric Processes 4.3.6 The Stability Problem in a Thermodynamical System 4.3.7 Adiabatic Systems 4.3.8 Systems at Constant Temperature 4.3.9 Systems at Constant Entropy 4.3.10 The Isothermal Compressibility 4.3.11 The Dependence of Entropy on Temperature 4.3.12 Other Consequences from the Stability Conditions 5 Maxwell Relations 5.1 Introduction 5.2 Some Properties of Materials 5.3 The Volume and Pressure Dependance of Entropy 5.4 The Heat Capacities and the Temperature Dependance of Entropy 5.4.1 The Heat Capacity at Constant Pressure 5.4.2 The Heat Capacity at Constant Volume 5.4.3 The Relation Between Cp and CV 5.4.4 The Adiabatic Compressibility Coefficient 5.4.5 The Equations of the Adiabatic Transformations 5.5 Concluding Remarks and the Role of Cp, α, χT 5.5.1 Isothermal Processes 5.5.2 Free Expansion 5.5.3 Pressure Drop in Free Expansion 5.5.4 Temperature–Pressure Variations in Adiabatic Transformations 5.5.5 Temperature–Volume Variations in Adiabatic Transformations Part II Applications 6 General Properties of Gaseous Systems 6.1 Isothermal Behavior of Gases 6.2 The First Virial Coefficient for Gases 6.2.1 The Joule–Thomson Experiment 6.2.2 Some Thermodynamic Potentials for Gases 6.2.3 Calorimetric Measurements for the Determination of the First Virial Coefficient 6.3 Definition of the Temperature Scale by Means of Gases 6.3.1 Other Determinations of the Temperature Scale 6.4 The Universal Constant of Gases 6.5 The Joule–Thomson Coefficient 6.6 The Inversion Curve 6.6.1 Liquefaction of Gases and the Attainability of Low Temperatures 6.7 A Simple Approximation of the Isothermal Behavior of Gases 6.8 The Chemical Potential in Diluted Gases 6.9 Molar Heat at Constant Volume for Dilute Gases 6.9.1 Microscopic Degrees of Freedom 6.9.2 Energy Equipartition 6.9.3 On the Temperature Dependence of Molar Heats 7 Phase Transitions 7.1 Phases Equilibrium 7.2 Latent Heat 7.2.1 Liquid–Vapor Equilibrium 7.2.2 Equilibrium Between Condensed Phases: Solid–Liquid 7.2.3 Solid–Vapor Equilibrium 7.3 Triple Point 7.4 Phase Diagrams 7.4.1 (p,V) Diagrams 7.4.2 Molar Heat at Equilibrium 7.4.3 Temperature Dependence of the Latent Heats 7.5 Continuity of States 7.6 Continuous-Phase Transitions 7.6.1 Differences Between Continuous- and Discontinuous-Phase Transitions 7.7 Exercises 8 van der Waals Equation 8.1 Introduction 8.2 A Simple Modification to the Equation of State for Ideal Gases 8.3 Successes and Failures of the van der Waals Equation 8.3.1 van der Waals Equation and the Boyle Temperature 8.3.2 The Critical Point 8.3.3 The Dependence of the Energy of a van der Waals Gas on Volume 8.3.4 The Coefficient of Thermal Expansion for a van der Waals Gas 8.3.5 The Molar Heats at Constant Volume and at Constant Pressure in a van der Waals Gas 8.3.6 The Joule–Thomson Coefficient and the Inversion Curve for a van der Waals Gas 8.3.7 Determination of Vapor Pressure from the van der Waals Equation 8.3.8 Free Energy in a van der Waals Gas 8.4 The Law of Corresponding States 8.4.1 Corresponding States for the Second Virial Coefficient 8.4.2 The Compressibility Factor and the Generalized Compressibility Chart 8.4.3 Vapor Pressure and Latent Heat of Vaporization 8.4.4 Triple Point and the Law of Corresponding States 8.4.5 The Inversion Curve and the Law of Corresponding States 8.4.6 The Law of Corresponding States and the van der Waals's Equation 8.5 Power Laws at the Critical Point in a van der Waals Gas 8.6 Exercises 9 Surface Systems 9.1 Introduction 9.2 Surface Tension 9.3 Properties of Surface Layers 9.3.1 Stability of Equilibrium States 9.4 Interfaces at the Contact Between Two Phases in Equilibrium 9.5 Curvature Effect on Vapor Pressure: Kelvin's Relation 9.6 Nucleation Processes and Metastability in Supersaturated Vapor 9.6.1 Spinodal Decomposition 9.6.2 Temperature Dependence 9.6.3 Surface Tension and the Law of Corresponding States 9.6.4 Interfaces at Contact Between Three Phases in Equilibrium 10 Electrostatic Field 10.1 Introduction 10.2 The Response of Matter 10.3 The Dielectric Constant 10.4 Thermodynamic Potentials for Linear Dielectrics 10.4.1 Thermodynamic Potentials for Linear Dielectrics Without Electrostriction 10.5 Dielectric Constant for Ideal Gases 11 Magnetic Field 11.1 Introduction 11.2 Electric Work, Magnetic Work, and Radiation 11.3 Constitutive Relations 11.3.1 Uniform Medium 11.4 Diamagnetic Materials 11.5 Paramagnetic Materials 11.5.1 Long, Rectilinear, and Homogeneous Solenoid 11.6 Thermodynamic Potentials in the Presence of Magnetostatic Fields 11.6.1 Expression of the Thermodynamic Potentials 11.6.2 Linear Media 11.7 Adiabatic Demagnetization 11.8 Ferromagnetic Materials 12 Thermodynamics of Radiation 12.1 Introduction 12.2 Kirchhoff's Law 12.2.1 Absorptivity of Material Bodies 12.2.2 Emissivity of Material Bodies 12.2.3 Black Body 12.2.4 Kirchhoff's Law for the Emissivity of a Black Body 12.2.5 One Fundamental Consequence of Kirchhoff's Law 12.2.6 Extended Form of the Kirchhoff's Law 12.2.7 Emittance 12.2.8 Radiation Energy Density and Emissivity 12.3 Wien's Law 12.3.1 Wien's Law According to Wien 12.3.2 Wien's Law and Relativity 12.3.3 Some Consequences of the Wien's Law 12.4 Thermodynamic Potentials for Radiation 12.5 Thermodynamical Processes for Radiation 12.5.1 Isothermal Processes 12.5.2 Adiabatic Processes 12.5.3 Isochoric Transformations (Constant Volume) 12.5.4 Free Expansion 12.6 Planck and the Problem of Black-Body Radiation 12.6.1 The Situation at the End of the Nineteenth Century and the Black-Body Radiation 12.6.2 Planck and the Problem of Matter–Radiation Interaction 12.6.3 The Planck Solution (Through Thermodynamics) 12.6.4 The Dawn of Quantum Physics 12.7 Exercises 13 Third Law of Thermodynamics 13.1 The Third Law of Thermodynamics 13.1.1 Formulation According to Nernst and Planck 13.1.2 Some Observational Consequences Part III Irreversible Processes 14 Irreversible Processes: Fundamentals 14.1 Introduction 14.1.1 Rephrasing the First Principle 14.2 Heat Exchange 14.3 Chemical Reactions 14.3.1 The Rate of Reaction 14.3.2 Entropy Production and the Chemical Affinity 14.4 Open Systems 14.5 Electrochemical Reactions 14.6 Generalized Fluxes and Forces 14.6.1 Determination of Generalized Fluxes and Forces 14.7 Onsager Relations 14.7.1 The Curie Symmetry Principle 14.8 The Approximation of Linearity 14.8.1 Chemical Affinity 14.8.2 Reaction Rate 14.8.3 Linear Relations Between Rates and Affinities 14.8.4 Relaxation Time for a Chemical Reaction 15 Irreversible Processes: Applications 15.1 Introduction 15.1.1 Thermomechanical Effects 15.1.2 Knudsen Gases 15.1.3 Electrokinetic Effects 15.2 Stationary States 15.2.1 Configurations of Minimal Entropy Production 15.2.2 Determination of the Stationary State 15.2.3 Stability of Stationary States and the Principles of Le Chatelier and of Le Chatelier–Braun 15.3 Fluctuations 15.3.1 Theory of Fluctuations in a Isolated System 15.3.2 Fluctuations Distribution Function 15.3.3 Mean Values and Correlations 15.3.4 Onsager Relations and the Decay of Fluctuations in Isolated Systems 16 Thermodynamics of Continua 16.1 Introduction 16.2 Definition of System 16.3 Mass Conservation 16.4 Equation of Motion 16.5 The Equation for Energy 16.6 The Equation for Entropy 16.6.1 Entropy Balance in Continuous Systems 16.6.2 The Entropy Production 16.6.3 Mechanical Equilibrium 16.6.4 The Einstein Relation Between Mobility and Diffusion Coefficient 16.7 Thermoelectric Phenomena 16.7.1 Seebeck Effect—Thermoelectric Power 16.7.2 Peltier Coefficient—Phenomenology 16.7.3 Thomson Effect—Phenomenology 16.7.4 Peltier Effect—Explanation 16.7.5 Thomson Effect 16.7.6 Galvanomagnetic and Thermomagnetic Effects 16.8 Thermodiffusion Processes 16.8.1 Binary Systems 16.8.2 Thermodiffusion 16.8.3 Dufour Effect 16.9 Appendix—The Gibbs–Duhem Relation Part IV Thermodynamics and Information 17 Introduction to the Role of Information in Physics 17.1 The Maxwell's Paradox 17.2 The Leo Szilard's Article in 1929 17.3 The Observer Creates Information 17.4 The Solution of Maxwell–Szilard Paradox 17.5 Landauer Principle 17.6 On the Separation Observer–Observed 17.6.1 Information as a Physical Quantity Which Acquires a Physical Reality 17.6.2 New Perspectives: The Physical Entropy According to Zurek Appendix A Math Tools A.1 Relation 1 A.2 Relation 2 A.3 Euler Theorem for Homogeneous Functions A.4 Schwarz's Theorem A.5 Differentials, Infinitesimals, Finite Differences A.5.1 Finite Differences A.5.2 Finite Differences Small Compared to Characteristic Scales A.5.3 Differentials and Infinitesimals A.5.4 Mutual Exchanges Between Two Systems Appendix B Pressure Exerted by a Particle Gas B.1 Mechanical Interpretation of the Pressure Exerted by a Particle Gas B.1.1 Particles Completely Absorbed by the Wall B.1.2 Particles Elastically Reflected by the Wall B.1.3 Nonrelativistic Case B.1.4 The Case of Radiation Appendix Solutions to the Problems Appendix References Index

توضیحاتی در مورد کتاب به زبان اصلی :


This book offers a comprehensive overview of thermodynamics. It is divided into four parts, the first of which equips readers with a deeper understanding of the fundamental principles of thermodynamics of equilibrium states and of their evolution. The second part applies these principles to a series of generalized situations, presenting applications that are of interest both in their own right and in terms of demonstrating how thermodynamics, as a theory of principle, relates to different fields. In turn, the third part focuses on non-equilibrium configurations and the dynamics of natural processes. It discusses both discontinuous and continuous systems, highlighting the interference among non-equilibrium processes, and the nature of stationary states and of fluctuations in isolated systems. Lastly, part four introduces the relation between physics and information theory, which constitutes a new frontier in fundamental research.

The book includes step-by-step exercises, with solutions, to help readers to gain a fuller understanding of the subjects, and also features a series of appendices providing useful mathematical formulae. Reflecting the content of modern university courses on thermodynamics, it is a valuable resource for students and young scientists in the fields of physics, chemistry, and engineering.






پست ها تصادفی