توضیحاتی در مورد کتاب Towards Cognitive Autonomous Networks: Network Management Automation for 5G and Beyond
نام کتاب : Towards Cognitive Autonomous Networks: Network Management Automation for 5G and Beyond
ویرایش : 1
عنوان ترجمه شده به فارسی : به سوی شبکه های خودمختار شناختی: اتوماسیون مدیریت شبکه برای 5G و فراتر از آن
سری :
نویسندگان : Stephen S. Mwanje (editor), Christian Mannweiler (editor)
ناشر : Wiley
سال نشر : 2020
تعداد صفحات : 686
ISBN (شابک) : 1119586380 , 9781119586388
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 24 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
List of Contributors
Foreword I
Foreword II
Preface
1 The Need for Cognitive Autonomy in Communication Networks
1.1 Complexity in Communication Networks
1.2 Cognition in Network Management Automation
1.3 Taxonomy for Cognitive Autonomous Networks
References
2 Evolution of Mobile Communication Networks
2.1 Voice and Low‐Volume Data Communications
2.2 Mobile Broadband Communications
2.3 Network Evolution – Towards Cloud‐Native Networks
2.4 Multi‐Service Mobile Communications
2.5 Evolution of Transport Networks
2.6 Management of Communication Networks
2.7 Conclusion – Cognitive Autonomy in 5G and Beyond
References
3 Self‐Organization in Pre‐5G Communication Networks
3.1 Automating Network Operations
3.2 Network Deployment and Self‐Configuration
3.3 Self‐Optimization
3.4 Self‐Healing
3.5 Support Function for SON Operation
3.6 5G SON Support and Trends in 3GPP
3.7 Concluding Remarks
References
4 Modelling Cognitive Decision Making
4.1 Inspirations from Bio‐Inspired Autonomy
4.2 Self‐Organization as Visible Cognitive Automation
4.3 Human Cognition
4.4 Modelling Cognition: A Perception‐Reasoning Pipeline
4.5 Implications for Network Management Automation
4.6 Conclusions
References
5 Classic Artificial Intelligence: Tools for Autonomous Reasoning
5.1 Classical AI: Expectations and Limitations
5.2 Expert Systems
5.3 Closed‐Loop Control Systems
5.4 Case‐Based Reasoning
5.5 Fuzzy Inference Systems
5.6 Bayesian Networks
5.7 Time Series Forecasting
5.8 Conclusion
References
6 Machine Learning: Tools for End‐to‐End Cognition
6.1 Learning from Data
6.2 Neural Networks
6.3 A Dip into Deep Neural Networks
6.4 Reinforcement Learning
6.5 Conclusions
References
7 Cognitive Autonomy for Network Configuration
7.1 Context Awareness for Auto‐Configuration
7.2 Multi‐Layer Co‐Channel PCI Auto‐Configuration
7.3 Energy Saving Management in Multi‐Layer RANs
7.4 Dynamic Baselines for Real‐Time Network Control
7.5 Conclusions
References
8 Cognitive Autonomy for Network‐Optimization
8.1 Self‐Optimization in Communication Networks
8.2 Q‐Learning Framework for Self‐Optimization
8.3 QL for Mobility Robustness Optimization
8.4 Fuzzy Q‐Learning for Tilt Optimization
8.5 Interference‐Aware Flexible Resource Assignment in 5G
8.6 Summary and Open Challenges
References
9 Cognitive Autonomy for Network Self‐Healing
9.1 Resilience and Self‐Healing
9.2 Overview on Cognitive Self‐Healing
9.3 Anomaly Detection in Radio Access Networks
9.4 Diagnosis and Remediation in Radio Access Networks
9.5 Knowledge Sharing in Cognitive Self‐Healing
9.6 The Future of Self‐Healing in Cognitive Mobile Networks
References
10 Cognitive Autonomy in Cross‐Domain Network Analytics
10.1 System State Modelling for Cognitive Automation
10.2 Real‐Time User‐Plane Analytics
10.3 Real‐Time Customer Experience Management
10.4 Mobile Backhaul Automation
10.5 Summary
References
11 System Aspects for Cognitive Autonomous Networks
11.1 The SON Network Management Automation System
11.2 NMA Systems as Multi‐Agent Systems
11.3 Post‐Action Verification of Automation Functions Effects
11.4 Optimistic Concurrency Control Using Verification
11.5 A Framework for Cognitive Automation in Networks
11.6 Synchronized Cooperative Learning in CANs
11.7 Inter‐Function Coopetition – A Game Theoretic Opportunity
11.8 Summary and Open Challenges
References
12 Towards Actualizing Network Autonomy
12.1 Cognitive Autonomous Networks – The Vision
12.2 Modelling Networks: The System View
12.3 The Development – Operations Interface in CANs
12.4 CAN as Data Intensive Network Operations
References
Index
End User License Agreement