توضیحاتی در مورد کتاب Transgenic Technology Based Value Addition in Plant Biotechnology
نام کتاب : Transgenic Technology Based Value Addition in Plant Biotechnology
ویرایش : 1 ed.
عنوان ترجمه شده به فارسی : ارزش افزوده مبتنی بر فناوری تراریخته در بیوتکنولوژی گیاهی
سری :
نویسندگان : Usha Kiran (editor), Malik Zainul Abdin (editor), Kamaluddin (editor)
ناشر : Academic Press
سال نشر : 2020
تعداد صفحات : 342
[336]
ISBN (شابک) : 0128186321 , 9780128186329
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 6 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
ارزش افزوده مبتنی بر فناوری تراریخته در بیوتکنولوژی گیاهی اصول، روششناسی و کاربردهای فناوریهای تراریخته را مورد بحث قرار میدهد. این کتاب با روشهای گام به گام در تکنیکهای ویرایش ژنوم و طیف وسیعی از کاربردهای بالقوه، از بهبود عملکرد محصول گرفته تا افزایش اثربخشی درمانی، مرجع یک مرحلهای برای فناوریهای ویرایش ژن گیاهی است. این مورد توجه ویژه ای برای محققان علاقه مند به بیوتکنولوژی گیاهی و ژنتیک گیاهی و همچنین دانشمندان کشاورزی و کسانی است که به گیاهان دارویی علاقه دارند.
فهرست مطالب :
Cover
Transgenic Technology Based Value Addition in Plant Biotechnology
Copyright
Contents
List of Contributors
Preface
one Bioprospecting of biodiversity for improvement of agronomic traits in plants
1.1 Salinity
1.2 Drought
1.3 Low temperature
1.4 Quantitative trait locus–based analysis of traits
1.5 Disease tolerance
Acknowledgment
References
Further reading
two Plant tissue culture: agriculture and industrial applications
2.1 Introduction
2.2 Micropropagation as a multiplication method
2.2.1 Stage 0: Preparation of donor plant
2.2.2 Stage I: Initiation stage
2.2.3 Stage II: Multiplication stage
2.2.4 Stage III: Rooting stage
2.2.5 Stage IV: Acclimatization stage
2.3 Organ cultures
2.4 Somatic embryogenesis and synthetic seeds
2.5 Haploid development via tissue culture
2.6 Pathogen-free plant propagation
2.7 Tissue culture and plant breeding
2.8 Plant tissue culture and development of transgenic plants
2.9 Somaclonal variation and its importance in plant improvement
2.10 Protoplast culture and somatic hybridization
2.11 Elicitation for enrichment of phytocompounds
2.12 Precursor addition
2.13 Hairy root culture and genetic manipulation
2.14 Endophytes and secondary metabolites
2.15 Bioreactor scaling
2.16 Immobilization scaling
2.17 In vitro germplasm storage
2.18 Conclusion and future perspective
References
Three Genome editing technologies for value-added traits in plants
3.1 Introduction
3.2 Techniques of genome editing
3.2.1 Zinc-finger nucleases
3.2.2 Transcription activator-like effector nucleases
3.2.3 Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR associated)
3.3 Application of genome editing systems
3.3.1 Multiplexing and trait stacking
3.3.2 High-throughput mutant libraries
3.3.3 Gene regulation
3.3.4 Targeted structural changes in crop species
3.4 Conclusion and future perspectives
References
four Bioinformatic tools to understand structure and function of plant proteins
4.1 Introduction
4.2 In silico structural and functional characterization proteins
4.3 Sequence-based approach
4.3.1 Biophysical characterization of proteins
4.3.2 Structure prediction
4.3.2.1 Secondary structure prediction
4.3.2.2 Tertiary structure prediction
4.3.2.3 Model validation and evaluation
4.4 Function prediction
4.4.1 Fold recognition/assignment
4.4.2 Structure-based function prediction
4.4.3 Active site prediction
4.5 Summary
References
five Transgenic technology for efficient abiotic stress tolerance in plants
5.1 Introduction
5.2 Transgenic approaches for engineering heat and cold tolerance in plants
5.3 Transgenic approaches for engineering salinity stress tolerance in plants
5.4 Transgenic approaches for engineering drought stress tolerance in plants
5.5 Transgenic approaches for increased flooding stress tolerance in plants
5.6 Improving plant tolerance to nutrient deficiency through genetic engineering
5.7 Improving plant tolerance to heavy metal stress tolerance through transgenic approaches
5.8 Conclusion
5.9 Future prospects
Acknowledgments
References
six Transgenic technologies for efficient insect pest management in crop plants
6.1 Introduction
6.2 Bt genes
6.2.1 Bt strains and toxins
6.2.2 Applications
6.3 First-generation genome editing technology
6.3.1 RNA interference
6.3.2 RNAi pathways and mechanism
6.3.3 Oral delivery method of dsRNA
6.3.3.1 Sprayable RNA interference approach
6.3.3.2 Nanoparticles-coated RNAi
6.3.4 Plant-mediated RNAi
6.4 Second-generation genome editing technology
6.5 CRISPR against insects
6.6 Nematode resistance in crop plants
6.7 Conclusions
Acknowledgment
References
seven Transgenic plants with improved nutrient use efficiency
7.1 Nitrogen
7.1.1 Nitrogen use efficiency
7.1.2 Transgenic crops with elevated nitrogen use efficiency
7.2 Phosphorus
7.2.1 Phosphorus utilization efficiency
7.2.2 Transgenic with elevated phosphorus utilization efficiency
7.3 Sulfur
7.3.1 Transgenic with elevated SUE
References
eight Genome editing of staple crop plants to combat iron deficiency
8.1 Introduction
8.2 Iron uptake and transport
8.2.1 Root uptake: iron uptake Strategy I and Strategy II
8.2.2 Chelators and long-distance transport of iron
8.2.3 Iron storage and vacuole sequestration
8.3 Genetic engineering to improve iron content in crops
8.3.1 Enhancing iron storage
8.3.2 Increasing iron translocation
8.3.3 Improving iron uptake
8.3.4 Multigene expression
8.4 Conclusion
References
nine Transgenic technology to improve therapeutic efficacy of medicinal plants
9.1 History of medicinal plants and natural products
9.2 Natural products: biosynthesis and classification
9.2.1 Terpenes
9.2.2 Alkaloids
9.2.3 Phenolics
9.3 Use of medicinal plants and secondary metabolites in traditional and modern medicine
9.4 Technologies for enhancement of secondary metabolites
9.4.1 Elicitors
9.4.1.1 Abiotic elicitors
9.4.1.2 Biotic elicitors
9.4.2 Homologous overexpression of therapeutic molecule/secondary metabolite biosynthesis key genes
9.4.3 Ectopic expression of genes to produce therapeutic molecule/secondary metabolite
9.4.4 Role of miRNAs in increasing the production of secondary metabolites
9.4.5 Artificial miRNAs for secondary metabolites enhancement
9.4.6 Regulating the expression of transcription factors
9.4.7 Regulating the endogenous levels of phytohormones involved in terpenoid biosynthesis
9.4.8 Regulating interrelated primary metabolic pathways
9.5 New approaches of engineering plant metabolic pathways to enhance secondary metabolites
References
ten Application of transgenic technologies in biofuel production through photosynthetic chassis—new paradigms from gene min...
10.1 Introduction
10.2 Metabolic engineering and synthetic biology
10.3 Improving photosynthesis
10.4 Formation of essential products via photosynthetic chassis
10.4.1 Sugars
10.4.2 Lipids
10.5 Terpenes
10.6 Muconic acid
10.7 Gene mining to genome editing
10.8 Challenges and future opportunities
Acknowledgments
References
eleven Genetic engineering of horticultural crops contributes to the improvement of crop nutritional quality and shelf life
11.1 Introduction
11.2 Conventional strategies to prolong the shelf life
11.3 The metabolic basis underlying fruit ripening and shelf life
11.4 Metabolic alterations incorporating the increased shelf life
11.5 Transgenic technology as a promising tool for crop nutritional quality and shelf life improvements
11.6 Resistance to biotic stress factors
11.7 Resistance to abiotic stress factors
11.8 Biofortification of fruits and vegetables
11.9 Genome editing as an efficient approach to develop crops with better nutritional qualities
11.10 Commercialization of GM fruits and vegetables
11.11 Conclusion
References
twelve Transgenic food crops: public acceptance and IPR
12.1 Transgenic technology for genetic modification of plants
12.2 Adoption and commercial benefits of biotech crops
12.3 Transgenic hybrids in India
12.4 Perceived risks of genetically modified crops
12.4.1 Consumption of foreign DNA
12.4.2 Allergenicity
12.4.3 Horizontal transfer of genetic material
12.4.4 Super plants an environmental risk
12.4.5 Effect on nontarget organism
12.4.6 Contamination of environment with genetically modified proteins
12.5 Safety assessment of genetically modified technology
12.5.1 Codex Alimentarius and Codex Alimentarius Commission
12.5.2 Framework for safety assessment
12.6 Assessment of possible allergenicity
12.6.1 Source of the gene
12.6.2 Sequence homology studies
12.6.3 Physiochemical stability
12.6.4 Serum screening
12.6.5 Testing models
12.7 Potential accumulation of substances significant to human health
12.8 Intellectual property rights in transgenic agriculture biotechnology
12.8.1 Trade secrets
12.8.2 Geographical indications
12.8.3 Trademarks
12.8.4 Copyright and related rights
12.8.5 International organization and agreements for intellectual property rights protection
12.8.6 Patents
12.8.7 Indian legislation on Protection of Plant Varieties and Farmers’ Rights
12.9 Conclusion and future prospects
References
Index
Back Cover
توضیحاتی در مورد کتاب به زبان اصلی :
Transgenic Technology Based Value Addition in Plant Biotechnology discusses the principles, methodology and applications of transgenic technologies. With step-by-step methods on genome editing techniques and a range of potential applications, from improving crop yield to increasing therapeutic efficacy, this book is a one-stop reference for plant gene editing technologies. It will be of particular interest to researchers interested in plant biotechnology and plant genetics, as well as agricultural scientists and those concerned with medicinal plants.