توضیحاتی در مورد کتاب Trends in Nonlinear and Adaptive Control: A Tribute to Laurent Praly for his 65th Birthday
نام کتاب : Trends in Nonlinear and Adaptive Control: A Tribute to Laurent Praly for his 65th Birthday
ویرایش : 1
عنوان ترجمه شده به فارسی : روندهای کنترل غیرخطی و تطبیقی: ادای احترام به لوران پرالی برای تولد 65 سالگی او
سری : Lecture Notes in Control and Information Sciences
نویسندگان : Zhong-Ping Jiang, Christophe Prieur, Alessandro Astolfi
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 290
ISBN (شابک) : 3030746275 , 9783030746278
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
این کتاب که به افتخار پروفسور لوران پرالی به مناسبت شصت و پنجمین سالگرد تولد او منتشر شد، پاسخهای برخی از مقامات بینالمللی پیشرو به چالشهای جدید در کنترل غیرخطی و تطبیقی را بررسی میکند. کاهش اثرات عدم قطعیت و غیرخطی - ویژگیهای همهجانبه مهندسی دنیای واقعی و سیستمهای طبیعی - بر پایداری و استحکام حلقه بسته از اهمیت حیاتی برخوردار است، مشارکتها آخرین تحقیقات را برای غلبه بر این مشکلات گزارش میکنند:
< p>
- سیستم های مستقل؛
- سیستم های کنترل بازنشانی؛
- سیستم های غیرخطی چند ورودی-چند خروجی؛
- تأخیرهای ورودی؛
- معادلات دیفرانسیل جزئی؛
- بازی های جمعیت. و
- کنترل مبتنی بر داده.
روندها در کنترل غیرخطی و تطبیقی تحقیقی را ارائه میکند که الهام گرفته از مشارکت پروفسور پرالی در طول عمر تئوری کنترل و مرتبط با آن است و افزودهای ارزشمند به ادبیات کنترل پیشرفته است.
فهرست مطالب :
Preface
Contents
1 Almost Feedback Linearization via Dynamic Extension: a Paradigm for Robust Semiglobal Stabilization of Nonlinear MIMO Systems
1.1 Foreword
1.2 Invertibility and Feedback Linearization
1.3 Normal Forms of Uniformly Invertible Nonlinear Systems
1.3.1 Normal Forms
1.3.2 Strongly Minimum-Phase Systems
1.4 Robust (Semiglobal) Stabilization via Almost Feedback Linearization
1.4.1 Standing Assumptions
1.4.2 The Nominal Linearizing Feedback
1.4.3 Robust Feedback Design
1.5 Application to the Problem of Output Regulation
1.6 An Illustrative Example
References
2 Continuous-Time Implementation of Reset Control Systems
2.1 Introduction
2.2 Objective and Primary Assumption
2.3 Continuous-Time Implementation and Main Result
2.4 Examples and Simulations
2.4.1 Example 2.1 Revisited
2.4.2 A Clegg Integrator Controlling a Single Integrator System
2.4.3 A Bank of Clegg Integrators Controlling a Strictly Passive System
2.4.4 A Bank of Stable FOREs Controlling a Detectable Passive System
2.5 Conclusion
References
3 On the Role of Well-Posedness in Homotopy Methods for the Stability Analysis of Nonlinear Feedback Systems
3.1 Introduction
3.2 Signal Spaces
3.2.1 Examples of Signal Spaces
3.2.2 Composite Signals
3.3 Systems, Controllability, and Causality
3.3.1 Controllability
3.3.2 Input/Output Systems, Causality, and Hemicontinuity
3.4 Stability and Gain of IO Systems
3.4.1 Finite-Gain Stability
3.4.2 Relationships Between Gain, Small-Signal Gain, and Norm Gain
3.4.3 Stability Robustness in the Gap Topology
3.4.4 Stability via Homotopy
3.5 Stability of Interconnections
3.5.1 Well-Posed Interconnections
3.5.2 Regular Systems
3.5.3 Integral Quadratic Constraints
3.6 Summary
3.7 Appendix
References
4 Design of Heterogeneous Multi-agent System for Distributed Computation
4.1 Introduction
4.2 Strong Diffusive State Coupling
4.2.1 Finding the Number of Agents Participating in the Network
4.2.2 Distributed Least-Squares Solver
4.2.3 Distributed Median Solver
4.2.4 Distributed Optimization: Optimal Power Dispatch
4.3 Strong Diffusive Output Coupling
4.3.1 Synchronization of Heterogeneous Liénard Systems
4.3.2 Distributed State Estimation
4.4 General Description of Blended Dynamics
4.4.1 Distributed State Observer with Rank-Deficient Coupling
4.5 Robustness of Emergent Collective Behavior
4.6 More than Linear Coupling
4.6.1 Edge-Wise Funnel Coupling
4.6.2 Node-Wise Funnel Coupling
References
5 Contributions to the Problem of High-Gain Observer Design for Hyperbolic Systems
5.1 Introduction
5.2 Problem Description and Solutions
5.2.1 Triangular Form for Observer Design
5.2.2 The High-Gain Observer Design Problem
5.3 Observer Design for Systems with a Single Velocity
5.3.1 Problem Statement and Requirements
5.3.2 Direct Solvability of the H-GODP
5.4 Observer Design for Systems with Distinct Velocities
5.4.1 System Requirements and Main Approach
5.4.2 Indirect Solvability of the H-GODP
5.5 Conclusion
References
6 Robust Adaptive Disturbance Attenuation
6.1 Introduction
6.2 Problem Formulation and Objectives
6.2.1 Preliminaries and Notation
6.3 Known Stable Plants: SISO Systems
6.3.1 Discrete-Time Systems
6.3.2 Continuous-Time Systems
6.4 Known Stable Plants: MIMO Systems
6.4.1 Discrete-Time Systems
6.4.2 Continuous-Time Systems
6.5 Unknown Minimum-Phase Plants: SISO Systems
6.5.1 Non-adaptive Case: Known Plant and Known Disturbance Frequencies
6.5.2 Adaptive Case: Unknown Plant and Unknown Disturbance
6.6 Numerical Simulation
6.6.1 SISO Discrete-Time Systems with Known Plant Model
6.6.2 SISO Continuous-Time Systems with Known Plant Model
6.6.3 MIMO Discrete-Time Systems with Known Plant Model
6.6.4 SISO Discrete-Time Systems with Unknown Plant Model
6.7 Conclusion
References
7 Delay-Adaptive Observer-Based Control for Linear Systems with Unknown Input Delays
7.1 Introduction
7.1.1 Adaptive Control for Time-Delay Systems and PDEs
7.1.2 Results in This Chapter: Adaptive Control for Uncertain Linear Systems with Input Delays
7.2 Adaptive Control for Linear Systems with Discrete Input Delays
7.2.1 Global Stabilization under Uncertain Plant State
7.2.2 Global Stabilization Under Uncertain Delay
7.2.3 Local Stabilization Under Uncertain Delay and Actuator State
7.3 Observer-Based Adaptive Control for Linear Systems with Discrete Input Delays
7.4 Adaptive Control for Linear Systems with Distributed Input Delays
7.5 Beyond the Results Given Here
References
8 Adaptive Control for Systems with Time-Varying Parameters—A Survey
8.1 Introduction
8.2 Motivating Examples and Preliminary Result
8.2.1 Parameter in the Feedback Path
8.2.2 Parameter in the Input Path
8.2.3 Preliminary Result: State-Feedback Design for Unmatched Parameters
8.3 Output-Feedback Design
8.3.1 System Reparameterization
8.3.2 Inverse Dynamics
8.3.3 Filter Design
8.3.4 Controller Design
8.4 Simulations
8.5 Conclusions
References
9 Robust Reinforcement Learning for Stochastic Linear Quadratic Control with Multiplicative Noise
9.1 Introduction
9.2 Problem Formulation and Preliminaries
9.3 Robust Policy Iteration
9.4 Multi-trajectory Optimistic Least-Squares Policy Iteration
9.5 An Illustrative Example
9.6 Conclusions
References
Index
توضیحاتی در مورد کتاب به زبان اصلی :
This book, published in honor of Professor Laurent Praly on the occasion of his 65th birthday, explores the responses of some leading international authorities to new challenges in nonlinear and adaptive control. The mitigation of the effects of uncertainty and nonlinearity – ubiquitous features of real-world engineering and natural systems – on closed-loop stability and robustness being of crucial importance, the contributions report the latest research into overcoming these difficulties in:
- autonomous systems;
- reset control systems;
- multiple-input–multiple-output nonlinear systems;
- input delays;
- partial differential equations;
- population games; and
- data-driven control.
Trends in Nonlinear and Adaptive Control presents research inspired by and related to Professor Praly’s lifetime of contributions to control theory and is a valuable addition to the literature of advanced control.