Ultrasound Physics and Instrumentation

دانلود کتاب Ultrasound Physics and Instrumentation

45000 تومان موجود

کتاب فیزیک سونوگرافی و ابزار دقیق نسخه زبان اصلی

دانلود کتاب فیزیک سونوگرافی و ابزار دقیق بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Ultrasound Physics and Instrumentation

نام کتاب : Ultrasound Physics and Instrumentation
ویرایش : 5
عنوان ترجمه شده به فارسی : فیزیک سونوگرافی و ابزار دقیق
سری :
نویسندگان :
ناشر : Miele Enterprises, Inc.
سال نشر : 2013
تعداد صفحات : 617
ISBN (شابک) : 0988582503 , 9780988582507
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 247 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Chapter 1 Mathematics
Ultrasound Physics and Instrumentation 5th Edition
Chapter 1Mathematics
1. How Difficult Can It Be?
2. How Much Math Will You Need?
3. Assessment Exam
4. Assessment Exam Answers
Chapter 2 Waves
Chapter 2Waves
Introduction
1. The Motivation for Studying Waves
2. Waves
2.1 Definition of a Wave
2.2 Examples of Waves
3. Classification of Waves
3.1 Benefit to Classifications
3.2 Electromagnetic (EM) Waves
3.3 Mechanical Waves
4. Conceptual Questions
5. Propagation of Mechanical Waves
5.1 Transverse Waves
5.2 Longitudinal Waves
5.3 Problems with Static Drawings of Waves
6. Variations in the Medium with PropagationAcoustic Variables)
6.1 Pressure
6.2 Density
6.3 Temperature
6.4 Particle Motion
7. Conceptual Questions
8. Wave Characteristics and Parameters
8.1 General
8.2 Four Basic Parameters and the Many AssociatedParameters
8.3 Frequency (/) and Period (P)
8.4 Propagation Velocity
8.5 Wavelength
8.6 Amplitude
9. Addition of Waves
9.1 Constructive Interference (In Phase Waves)
9.2 Destructive Interference (Out of Phase Waves)
9.3 Partial Constructive (or Partially Destructive)Interference
10. Exercises and Conceptual Questions
11. Relating Wave Characteristics to Applicationand Relevance in Diagnostic Ultrasound
12. Wave Characteristics and Parameters
12.1 Frequencyand Period
12.2 The General Term Frequency
12.3 Propagation Velocity
12.4 Wavelength
12.5 Amplitude
13. Decibels (dB)
13.1 The Need for Decibels
13.2 The Definition of Decibels
13.3 The Equation for Decibels
13.4 Applying the Equation for Decibels
13.5 The Amplitude Form of the Decibel Equation
13.6 Why Two Forms and When to Use Which Form
13.7 Exercises
14. Comparing Frequency with Amplitude
14.1 Frequency and Amplitude are Disjoint
14.2 Graphical Representation
14.3 Exercises and Conceptual Questions
CHAPTER SUMMARY : WAVES
Chapter 3 Attenuation
Chapter 3Attenuation
1. Attenuation
2. Absorption
2.1 Absorption and Viscosity
2.2 Absorption and Frequency Dependence
3. Reflection
3.1 Geometric Aspects of Reflection
3.2 Acoustic Aspects of Reflection
4. Refraction
4.1 Refraction Defined
4.2 Visualizing Refraction
4.3 Oblique Incidence but No Change in PropagationVelocities
4.4 Normal Incidence (Incident angle = 0 degrees)
4.5 Snell’s Law
4.6 The Critical Angle
5. Conceptual Questions
6. Ultrasound Terminology
6.1 Echogenicity
6.2 Uniformity
6.3 Plaque Surface Characteristics
7. Attenuation Rates
7.1 Table of Attenuation Rates
7.2 Calculating Approximate Attenuation
7.3 Interpreting Calculated Attenuation
8. Absorption in the Body
8.1 In Soft Tissue, Absorption is the Dominant FactorCreating Attenuation
8.2 Absorption Increases Exponentially with IncreasingFrequency
8.3 Fluids and Absorption
9. Reflection in the Body Based on Geometric Conditions
9.1 Specular Reflection
9.2 Scattering in the Body
9.3 Rayleigh Scattering
9.4 Reflection in the Body Based on Acoustic Aspects
9.4.1 The Acoustic Impedance Mismatch
10. Refraction in the Body
10.1 Effects of Refraction
10.2 The Critical Angle and Refractive Shadowing
10.3 Applying Snell’s Law
10.4 Important Points about Refraction
11. Exercises and Conceptual Questions
12. Review of Attenuation
13. Table of Acoustic Values
14. Reflection and Transmission Percentage for non-normal Incidence
15. Matching Layer
16. Two Matching Layers
17. Determining the Maximum Imaging Depthfrom the Dynamic Range
CHAPTER SUMMARY : ATTENUATION
Chapter 4 Pulsed Wave Operation
Chapter 4Pulsed Wave Operation
Introduction
1. Motivation for Using Pulsed Wave (PW)
1.1 Range Ambiguity and Continuous Wave (CW)
1.2 Range Specificity and Very Short Pulse
1.3 Range Specificityand Longer Pulse Pulsed Wave (PW)
1.4 Range Ambiguity and a Longer Pulse
2. Pulsed Wave Definitions
2.1 Time Related Pulsed Wave Definitions
2.2 Distance Related Pulsed Wave Definitioins
3. Relating Wave Parameters and Pulsed Wave(PW) Parameters
3.1 The Difference Between a Wave Parameter and a PWParameter
3.2 Time Related Wave Parameters and PW Parameters
3.3 Distance Related Pulsed Wave Definitions
4. The Foundational Drawing for Pulsed Wave
5. Pulsed Wave and the Need to UnderstandTiming
6. Definitions for Pulse Wave Related ImagingParameters
7. Scanned and Non-Scanned Modalities
7.1 Scanned Modalities
7.2 Non-scanned Modalities
8. Relating PW Parameters to Ultrasound
8.1 The Pulse Duration
8.2 The Pulse Repetition Period and the PRF
8.3 The Spatial Pulse Length
8.4 Using the PRP (Line Time) to Calculate the FrameTime (and Frame Rate)
8.5 Comparing Temporal Resolution for Scanned andNon-Scanned Modalities
9. Color Doppler, Frame Rate, and TemporalResolution
9.1 General
9.2 Creating a Color Scan
9.3 Calculating the Color and Overall Frame Rate
9.4 Color and Poor Temporal Resolution
9.5 Choosing a Packet Size, the Trade-Off
10. Optimizing Frame Rate and TemporalResolution
11. Typical Values and Ranges for Wave, PW and Frame Parameters
12. The Foundational Drawing for Pulse Wave Revisited
13. Exercises
14. Bandwidth
14.1 Bandwidth Defined
14.2 Pictorial Representation of Bandwidth
14.3 Bandwidth Calculation
14.4 Fractional Bandwidth
14.5 Quality Factor
14.6 The Value of Greater Bandwidth
15. Pulse Duration (Width) vs. Bandwidth
15.1 The Reciprocal Relationship
15.2 The Meaning of the Operating Frequency and Bandwidth Relationship
16. Conceptual Questions
CHAPTER SUMMARY : PULSED WAVE OPERATION
Chapter 5 Transducers
Chapter 5Transducers
Introduction
1.Transducer Basics
1.1 Transducers Defined
1.2 Examples of Transducers
1.3 Ultrasound Transducers and Bi-directionality
2. Ultrasound Transducersand the PiezoelectricEffect
2.1 The Piezoelectric Effect
2.2 The Piezoelectric Mechanism
2.3 Natural Piezoelectric Materials
2.4 Manufactured Piezoelectric Materials
2.5 Poling
2.6 Curie Point
3. Frequency of Operation and Crystal Dimension
3.1 Pulse Wave
3.2 Continuous Wave
4. Impulse Response of a Transducer
5. Beam Characteristics with a Simple, Single Disc Transducer
5.1 Simple, Single, Disc Transducers
5.2 The Beam Parameters
5.3 The Natural Focus
5.4 Varying the depth of the Natural Focus
6. Limitations of the Simple Crystal
7. Minimizing the Acoustic ImpedanceMismatch
7.1 High Impedance Piezoceramics
7.2 Matching Layer
7.3 Quarter Wavelength Thickness
7.4 Compositeswith Lower Acoustic Impedances
8. Detail Resolution
8.1 General
8.2 Axial Resolution
8.3 Lateral Resolution
8.4 Elevation Resolution
9. Simple Block Diagram Model of aTransducer
10. Exercises
11. Beam Dimensions Revisited
11.1 Depth of Focus (Focal depth) and Equation
11.2 Depth of Field (Focal Region)
11.3 True Beam Shapes
11.4 Changing Intensity from Beam Convergence andDivergence
12. Transducer Evolution Overview
13. Imaging Dimensions
14. The Pedof (Blind, Doppler OnlyTransducer)
15. Sequencing
16. Linear Switched Array
17. Mechanically Steered
18. Mechanical Annular Array
19. Electronic Steering
19.1 Understanding the Term Phase
19.2 Electronic Steering for Transmit
19.3 Electronic Steering for Receive
19.4 Electronic Focusing for Transmit
19.5 Electronic Focusing for Receive
19.6 Focusing and Steering Together
20. 1-D Phased Array Sector
21. 1-D Linear Phased Array
22. 1-D Curved Linear Phased Array
23. Plano Concave (Hanafy Lens)
23.1 1-D Arrays and Sub-optimal Elevation Control
23.2 Hanafy Lens
24. Multi-dimensional Arrays
24.1 1.5-D Arrays
24.2 2D Arrays
25. Piezocomposite Materials
26. Imaging Planes and Detail Resolution
26.1 Lateral Resolution
26.2 Elevation Resolution
26.3 Axial Resolution
27. Important Concepts for Transducers
28. Exercises and Conceptual Questions
29. The Piezoelectric Effect
29.1 Use of Piezoelectric Materials
29.2 Crystal Structures
29.3 Intermolecular Bonds
29.4 Polarization
30. Newer Technologies
30.1 New Crystal Growth Technology
30.2 Capacitor Micromachined Ultrasound Transducer(CMUT)
CHAPTER SUMMARY : TRANSDUCERS
Chapter 6 System Operation
Chapter 6System Operation
Introduction
1. The Basic Processes of Real-Time Imaging
2. Important System Definitions
2.1 Transmit Power
2.2 Dynamic Range
2.3 Signals, Noise, and Signal-to-Noise Ratio (SNR
2.4 Preprocessing and Post Processing
3. Analog to Digital (A/D) Conversion
3.1 Nyquist Criteria
4. Basic Functions of a System (Simplified)
4.1 Putting the Pieces Together
5. Transmitter (Pulser - Transmit Beamformer)
5.1 Function
5.2 The System Control for Transmit Power
5.3 Practical Concerns
6. Receiver
6.1 Amplification (Receiver Gain)
6.2 Compensation (Time Gain Compensation)i
6.3 Compression
6.4 Demodulation
6.5 Reject
7. A-mode (Amplitude mode)
7.1 A-mode Display
7.2 Interpreting an A-mode
7.3 The Use of A-mode
8. Exercises
9. System Block Diagram
10. Controls that Affect Transmit andkser Distribution
10.1 Transducer Frequency and Transmit Power
10.2 Imaging Modalities, Image Size and Transmit Power
10.3 Imaging Depth and Transmit Power
10.4 Focus and Transmit Power
11. TGC and Gain Revisited
11.1 Internal TGC Profiles
11.2 Intemal Color TGC Profiles
11.3 \"Pre-compensated” TGC Profiles
11.4 TGCs and Imaging Scenarios
11.5 Appropriate Use of Receiver Gain with TGCs
12. Analog to Digital Conversion
12.1 Front End and Back End of an Ultrasound System
12.2 Role of the Beamformer
12.3 Analog Received Signal and Digital Output to Back End
12.4 The Motivation for Converting from Analog to Digital
13. Scan Conversion
13.1 Paradigm Shift: From A-mode to B-mode
13.2 Creating a B-mode From an A-mode
13.3 The Role of the Scan Converter
13.4 Polar Scan Conversion and Tateral Distortion
13.5 Inconsistent Terminology in the Field
14. Preprocessing and Post Processing Revisited
14.1 Understanding the Difference
15. Compression
15.1 Compression: A Multi-Stage Process
15.2 Dynamic Range of 2D Echoes
15.3 Dynamic Range of the Human Eye
15.4 Why the System Allows for Compression in the Back End of the System
15.5 Compression Controls on the System
15.6 Using Compression Controls Correctly
16. Tissue Colorization
17. Measurements
17.1 Area Measurements
18. Video Display and Monitors
18.1 CRT
18.2 Monitor Formats and “ Standards”
18.3 Non-Interlaced Monitors
18.4 Liquid Crystal Displays (LCD)
18.5 LCD Advantages and Disadvantages:
18.6 Subdividing Horizontal Lines into Pixels
18.7 Relating Brightness Levels to Binary
18.8 Brightness Levels and Ambient Light
19. Data Storage Devices (External)
19.1 Disadvantages of Analog Storage Devices
19.2 VHS and SVHS (VCR)
19.3 Disadvantages of Digital Storage Devices
20. Data Storage (Internal)
20.1 Cine (Cineloop) Review
20.2 Purposes for Cine Review
20.3 The Recording Length of a Cine Memory
21. Zoom (Res Mode, Magnification)
21.1 Acoustic Versus Non-acoustic
21.2 Non-acoustic Zoom (Read Zoom)
21.3 Acoustic Zoom (Write Zoom)
22. Transmit and Focus Related Alternatives to Conventional B-mode Imaging
22.1 Multiple Transmit Foci
22.2 Parallel Processing
22.3 Multiple Receive Beams Per Transmitted Beam
22.4 How Parallel Processing Works
23. Averaging Based Techniques
23.1 Adding Signals
23.2 (Spatial) Compound Imaging (Sono CT, Crossbeam)
23.3 Image Persistence
23.4 Spatial Averaging
23.5 Frequency Compounding (Fusion):
24. Ultrasound Modes
24.1 Three-Dimensional (3D) and Four-Dimensional(4D) Imaging
24.2 C-mode (Constant Depth Mode)
24.3 M-mode (Motion Mode)
25. Resolution Formally Revisited
25.1 Detail Resolution
25.2 Contrast Resolution
25.3 Temporal Resolution
26. Real-Time Imaging
27. Panoramic Imaging (SieScape, LOGIQ View)
28. Adaptive Processing (Auto Optimize, iSCANNTEQ)
29. Exercises and Conceptual Questions
30. Video Formats Revisited
30.1 Comparing Line Resolution of Video Formats
30.2 Issues with Analog Videotape
30.3 Duplication and Conversion Between Formats
31. Analog to Analog (Video Copying)
32.AnalogDatatoDigitalDataIssues(Digitizing Videotape)
33. Comparison of Digital Memory Devices
34. Digital Formats and Compression
34.1 Data Compression and Decompression (CODEC)
34.2 Video Formats Versus CODEC
34.3 Comparison of Video Formats
34.4 A Partial List of CODEC
35. Compression Algorithms and Technique
35.1 Truncation
35.2 Run Length Encoding (RLE)
35.3 Indexing (Lookup Table)
35.4 Spatial Interpolation
35.5 Temporal Interpolation
35.6 Mathematical Transforms
35.7 Statistical Approaches
35.8 Motion Detection
35.9 Combining Algorithms
36. Digital to Digital Format Conversion
36.1 Multiple (Iterative) Compressions
36.2 An “Idealized” Controlled Test
36.3 A “ Closer to Real World” Controlled Test
37. DICOM
38. Analog Versus Digital Systems
CHAPTER SUMMARY : SYSTEM OPERATION
Chapter 7 Doppler
Chapter 7Doppler
1. The Doppler Effect
2. Relationships in the Doppler Equation
3. A Simplified Doppler Equation
4. Solving the Doppler Equation for Velocity
5. Conceptual Questions
6. Completing the Doppler Equation
7. Doppler Shifts from Red Blood Cells
8. Identifying the Doppler Angle (Insonification or Insonation Angle)
9. Exercises
10. Spectral Doppler System Operation
11. The Processes Involved in Spectral Doppler
12. Frequency vs. Amplitude
13. PW vs. CW Comparison
14. The Maximum Detectable Velocity
15. The Presence of a Spectral Window
16. PW Versus CW Comparison
17. PW Range Ambiguity
18. HPRF Doppler
19. Doppler Insonification Angle and ErrorSources
20. Color Flow
21. Color Doppler Versus Spectral Doppler
22. Overview of How Color Doppler isPerformed
23. Time Correlated Color
24. Color Gain
25. Interpreting the Color Bar Relative to Spectral Doppler
26. Color Invert and Aliasing
27. Color Wall Filters
28. Determining Flow Direction in ColorDoppler
29. Color Persistence
30. Color Priority
31. Color Power Doppler
32. Understanding the Behavior of Color Wall Filters
33. Conceptual Questions
CHAPTER SUMMARY : DOPPLER
Chapter 8 Artifacts
Chapter 8Artifacts
1. Categorizing Artifacts
2. Detail Resolution
3. “ Locational” Artifacts
4. Attenuation Artifacts
5. Phase Related Artifacts
6. Doppler and Color Doppler Artifacts
7. Color Doppler Dropout
8. Conceptual Questions
CHAPTER SUMMARY : ARTIFACTS
Chapter 9 Bioeffects
Chapter 9Bioeffects
1. Mechanisms of Bioeffects
2. The Desire to Safeguard the Patient
3. Research and Standards
4. Power Measurements as a Basis for Gauging the Risk of Bioeffects
5. Common Intensities
6. The Significance of the Common Intensities
7. Exercises
8. Relating Risks of Bioeffects to Ultrasound Modes
9. Acoustic Power Measurements
10. Output Display Standards
11. Mechanical Index (MI)
12. Thermal Indices
13. AIUM Statements Regarding Ultrasoundand Bioeffects
14. Conceptual Questions
15. Review Sheet for Converting Intensities
16. Hydrophones
CHAPTER SUMMARY : BIOEFFECTS
Chapter 10 Contrast and Harmonics
Chapter 10Contrast and Harmonics
1. Motivation for Contrast Imaging
2. Fundamentals of Harmonics
3. Technology Advances
4. Relative Amplitudes
5. Generation of Harmonics
6.AdvantagesandDisadvantagesofConventionalHarmonics
7. Pulse or Phase Inversion
8. Current Uses of Contrast Imaging
9. Properties of Contrast
10. The Mechanical Index (MI)
11. Transmit Focus
12. Contrast Specific Detection Techniques
13. Challenges at High MI: Triggered Acquisition
14. Low MI Techniques
15. Challenges at Low Mis: Signal-to-Noise
16. The Future
CHAPTER SUMMARY : CONTRAST AND HARMONICS
Chapter 11 Quality Assurance
Chapter 11Quality Assurance
1. Laboratory Accreditation
2. Transducer Care
3. Equipment Testing
4. 2D and Doppler Testing
5. Doppler Testing and Phantoms
6. Imaging Phantoms and Test Objects
7. Commercially Available Imaging Phantoms
8. Conceptual Questions
9. Quality Assurance Statistics
10. Q&A Statistics
11. Making Statistical Indices More Intuitive
12. Building the Table of Data
13. Exercises: Interpreting the Statistical Table
14. Statistical Parameters
15. Numerical Example
16. Real World Understanding
17. Exercises: Statistical Indices
CHAPTER SUMMARY : QUALITY ASSURANCE
Chapter 12 Fluid Dynamics
Chapter 12Fluid Dynamics
1. Flow Analogy
2. Fluid Dynamics
3. Derivation of Equations
4. Bernoulli’s Equation and Energy
5. Basics of Flow and Flow Diagrams
6. Reynold s Number and Turbulence
7. Exercises
CHAPTER SUMMARY : FLUID DYNAMICS
Chapter 13 Hemodynamics
Chapter 13Hemodynamics
1. Removing Some of the Simplifications
2. The Assumption: Rigid Flow Conduits
3. Pressure, Flow, and Resistance in theCardiovascular System (The Simplified Law)
4. The Healthy Cardiovascular System as a Whole
5. The Subcritical Diseased Cardiovascular Svstem at Rest
6. Spectral Doppler as a Means of AssessingHemodynamics
7. Flow Visualization
CHAPTER SUMMARY : HEMODYNAMICS
Chapter 14 Muskuloskeletal Ultrasound
Chapter 14Musculoskeletal Ultrasound
1 . History and Background
2. Structure
3. Ultrasound System Parameters
4. Tissue Imaging Characteristics
5. Tissue Signatures
6. Artifacts
Summary
Chapter 15 Focused Ultrasound
Chapter 15Focused Ultrasound
1. Focused Ultrasound (General)
2. Principles of Operation Pertinent toFocused Ultrasound
3. Guidance of Focused Ultrasound
4. Clinical Indications
5. Parameters of Technology Adoption
6. Future Landscape for Focused Ultrasound
Chapter 16 Elasatography
Chapter 16Elastography
P Palpation and Tissue Stiffness
2. History of Elastography
3. Elastography Method Categorizations
4. Static Elastography
5. Elastogram Presentation
6. Elastogram Quality
7. Static Elastograms
8. Dynamic Elastography Methods
Chapter 17 IMT Ultrasound Imaging
Chapter 17IMT Ultrasound Imaging
1. Carotid Artery Anatomy
2. Acquiring the Images
3. System Settings
Chapter 18 Speckle Tracking and Cardiac Strain
Chapter 18Speckle Tracking and CardiacStrain
1. Introduction and Definition of Strain and Strain Rate
2. Measuring Strain: Cardiac Deformation Imaging Techniques
3. Speckle and Speckle Tracking
Conclusion
Chapter 19 Patient Care and Sonographer Safety
Chapter 19 Patient Care and Sonographer Safety
1. Safety Aspects of Patient Care
2. Personal Aspects of Patient Care
3. Sonographer Safety
Summary
v. Appendix A Mathematics
w. Appendix B Answers to Chapter Exercises
x. Appendix C Glossery
y. Appendix D Index
z. Appendix E Abbreviations




پست ها تصادفی