توضیحاتی در مورد کتاب Unity Artificial Intelligence Programming: Add powerful, believable, and fun AI entities in your game with the power of Unity
نام کتاب : Unity Artificial Intelligence Programming: Add powerful, believable, and fun AI entities in your game with the power of Unity
ویرایش : 5 ed.
عنوان ترجمه شده به فارسی : برنامه نویسی هوش مصنوعی یونیتی: با قدرت یونیتی موجودیت های هوش مصنوعی قدرتمند، باورپذیر و سرگرم کننده را به بازی خود اضافه کنید.
سری :
نویسندگان : D. Aversa
ناشر :
سال نشر : 2022
تعداد صفحات : 309
ISBN (شابک) : 9781803238531
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 Mb
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Title
Copyright and Credits
Table of Contents
Part 1:Basic AI
Chapter 1: Introduction to AI
Understanding AI
AI in video games
AI techniques for video games
Finite state machines
Randomness and probability in AI
The sensor system
Flocking, swarming, and herding
Path following and steering
A* pathfinding
Navigation meshes
Behavior trees
Locomotion
Summary
Chapter 2: Finite State Machines
Technical requirements
Implementing the player's tank
Initializing the Tank object
Shooting the bullet
Controlling the tank
Implementing a Bullet class
Setting up waypoints
Creating the abstract FSM class
Using a simple FSM for the enemy tank AI
The Patrol state
The Chase state
The Attack state
The Dead state
Taking damage
Using an FSM framework
The AdvancedFSM class
The FSMState class
The state classes
The NPCTankController class
Summary
Chapter 3: Randomness and Probability
Technical requirements
Introducing randomness in Unity
Randomness in computer science
The Unity Random class
A simple random dice game
Learning the basics of probability
Independent and correlated events
Conditional probability
Loaded dice
Exploring more examples of probability in games
Character personalities
Perceived randomness
FSM with probability
Dynamically adapting AI skills
Creating a slot machine
A random slot machine
Weighted probability
A near miss
Summary
Further reading
Chapter 4: Implementing Sensors
Technical requirements
Basic sensory systems
Scene setup
The player's tank and the aspect class
The player's tank
Aspect
AI characters
Sense
Sight
Touch
Testing
Summary
Part 2:Movement and Navigation
Chapter 5: Flocking
Technical requirements
Basic flocking behavior
Individual behavior
Controller
Alternative implementation
FlockController
Summary
Chapter 6: Path Following and Steering Behaviors
Chapter 7: A* Pathfinding
Technical requirements
Revisiting the A* algorithm
Implementing the A* algorithm
Node
PriorityQueue
The GridManager class
The AStar class
The TestCode class
Setting up the scene
Testing the pathfinder
Summary
Chapter 8: Navigation Mesh
Technical requirements
Setting up the map
Navigation static
Baking the NavMesh
NavMesh agent
Updating an agent's destinations
Setting up a scene with slopes
Baking navigation areas with different costs
Using Off Mesh Links to connect gaps between areas
Generated Off Mesh Links
Manual Off Mesh Links
Summary
Part 3:Advanced AI
Chapter 9: Behavior Trees
Technical requirements
Introduction to BTs
A simple example – a patrolling robot
Implementing a BT in Unity with Behavior Bricks
Set up the scene
Implement a day/night cycle
Design the enemy behavior
Implementing the nodes
Building the tree
Attach the BT to the enemy
Summary
Further reading
Chapter 10: Procedural Content Generation
Technical requirements
Understanding Procedural Content Generation in games
Kinds of Procedural Content Generation
Implementing a simple goblin name generator
Generating goblin names
Completing the goblin description
Learning how to use Perlin noise
Built-in Unity Perlin noise
Generating random maps and caves
Cellular automata
Implementing a cave generator
Rendering the generated cave
Summary
Further reading
Chapter 11: Machine Learning in Unity
Technical requirements
The Unity Machine Learning Agents Toolkit
Installing the ML-Agents Toolkit
Installing Python and PyTorch on Windows
Installing Python and PyTorch on macOS and Unix-like systems
Using the ML-Agents Toolkit – a basic example
Creating the scene
Implementing the code
Adding the final touches
Testing the learning environment
Training an agent
Summary
Further reading
Chapter 12: Putting It All Together
Technical requirements
Developing the basic game structure
Adding automated navigation
Creating the NavMesh
Setting up the agent
Fixing the GameManager script
Creating decision-making AI with FSM
Summary
Index