دانلود کتاب تجزیه و تحلیل تغییرات و بهینه سازی مجموعه ها-توسعه ها و کاربردها در تصمیم گیری بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
نام کتاب : Variational Analysis and Set Optimization-Developments and Applications in Decision Making
ویرایش : 1
عنوان ترجمه شده به فارسی : تجزیه و تحلیل تغییرات و بهینه سازی مجموعه ها-توسعه ها و کاربردها در تصمیم گیری
سری :
نویسندگان : Akhtar A. Khan (Editor), Elisabeth Köbis (Editor), Christiane Tammer (Editor)
ناشر : CRC Press
سال نشر : 2019
تعداد صفحات : 337
ISBN (شابک) : 9781138037267 , 9781351712057
زبان کتاب :
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
Preface
Variational Analysis and Variational Rationality in Behavioral Sciences
Boris S. Mordukhovich and Antoine Soubeyran
Introduction
Variational Rationality in Behavioral Sciences
Evaluation Aspects of Variational Rationality
Exact Stationary Traps in Behavioral Dynamics
Evaluations of Approximate Stationary Traps
Geometric Evaluations and Extremal Principle
Summary of Major Finding and Future Research
References
A Financial Model for a Multi-Period Portfolio Optimization Problem
Gabriella Colajanni and Patrizia Daniele
Introduction
The Financial Model
Variational Inequality Formulation and Existence Results
Numerical Examples
Conclusions
References
A Generalized Proximal Alternating Linearized Method
Antoine Soubeyran, Jo˜ao Carlos Souza, and Jo˜ao Xavier Cruz Neto
Introduction
Potential Games: How to Play Nash?
Variational Analysis: How to Optimize a Potential Function?
Variational Rationality: How Human Dynamics Work?
Computing How to Play Nash for Potential Games
References
Sublinear-like Scalarization Scheme for Sets and its Applications
Koichiro Ike, Yuto Ogata, Tamaki Tanaka, and Hui Yu
Introduction
Set Relations and Scalarizing Functions for Sets
Inherited Properties of Scalarizing Functions
Applications to Set-valued Inequality and Fuzzy Theory
References
Functions with Uniform Sublevel Sets, Epigraphs and Continuity
Petra Weidner
Introduction
Preliminaries
Directional Closedness of Sets
Definition of Functions with Uniform Sublevel Sets
Translative Functions
Nontranslative Functions with Uniform Sublevel Sets
Extension of Arbitrary Functionals to Translative Functions
References
Optimality and Viability Conditions for State-Constrained Control Problems
Robert Kipka
Introduction
Background
Strict Normality and the Decrease Condition
Metric Regularity, Viability, and the Maximum Principle
Closing Remarks
References
Lipschitz Properties of Cone-convex Set-valued Functions
Vu Anh Tuan and Thanh Tam Le
Introduction
Preliminaries
Concepts on Convexity and Lipschitzianity of Set-valued Functions
Lipschitz Properties of Cone-convex Set-valued Functions
Conclusions
References
Vector Optimization with Variable Ordering Structures
Marius Durea, Elena-Andreea Florea, and Radu Strugariu
Introduction
Preliminaries
Efficiency Concepts
Sufficient Conditions for Mixed Openness
Necessary Optimality Conditions
Bibliographic Notes, Comments, and Conclusions
References
Vectorial Penalization in Multi-objective Optimization
Christian G¨unther
Introduction
Preliminaries in Generalized Convex Multi-objective Optimization
Pareto Efficiency with Respect to Different Constraint Sets
A Vectorial Penalization Approach in Multi-objective Optimization
Penalization in Multi-objective Optimization with Functional
Conclusions
References
Set Optimization Problems Reducible to Vector Optimization Problems
Gabriele Eichfelder and Tobias Gerlach
Introduction
Basics of Vector and Set Optimization
Set Optimization Problems Being Reducible to Vector Optimization Problems
Implication on Set-valued Test Instances
References
Abstract Convexity and Solvability Theorems
Ali Reza Doagooei
Introduction
Abstract Convex Functions
Solvability Theorems for Real-valued Systems of Inequalities
Vector-valued Abstract Convex Functions and Solvability Theorems
Applications in Optimization
References
Regularization Methods for Scalar and Vector Control Problems
Baasansuren Jadamba, Akhtar A. Khan, Miguel Sama, and Christiane Tammer
Introduction
Lavrentiev Regularization
Conical Regularization
Half-space Regularization
Integral Constraint Regularization
A Constructible Dilating Regularization
Regularization of Vector Optimization Problems
Concluding Remarks and Future Research
References