توضیحاتی در مورد کتاب Variational Techniques for Elliptic Partial Differential Equations: Theoretical Tools and Advanced Applications
نام کتاب : Variational Techniques for Elliptic Partial Differential Equations: Theoretical Tools and Advanced Applications
ویرایش : 1
عنوان ترجمه شده به فارسی : تکنیک های متغیر برای معادلات دیفرانسیل جزئی بیضوی: ابزارهای نظری و کاربردهای پیشرفته
سری :
نویسندگان : Francisco J. Sayas, Thomas S. Brown, Matthew E. Hassell
ناشر : CRC Press
سال نشر : 2019
تعداد صفحات : 515
ISBN (شابک) : 1138580880 , 9781138580886
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 2 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
توضیحاتی در مورد کتاب :
تکنیک های متغیر برای معادلات دیفرانسیل جزئی بیضوی که برای دانشجویان فارغ التحصیل در حال تحصیل در ریاضیات کاربردی، تجزیه و تحلیل و/یا آنالیز عددی در نظر گرفته شده است، ابزارهای لازم را برای درک ساختار و حل پذیری معادلات دیفرانسیل جزئی بیضوی با شروع تعاریف و قضایای لازم از نظریه توزیع، این کتاب به تدریج چارچوب تحلیلی عملکردی را برای مطالعه PDE بیضوی با استفاده از فرمولهای متغیر ایجاد میکند. به جای معرفی همه پیش نیازها در فصل اول، این معرفی مسائل جدید است که انگیزه توسعه ابزارهای تحلیلی مرتبط را ایجاد می کند. به این ترتیب دانش آموزی که برای اولین بار با این مطالب مواجه می شود، دقیقاً متوجه خواهد شد که چه نظریه ای و برای کدام مسائل مورد نیاز است.
ویژگی ها
- توسعه دقیق و دقیق تئوری فضاهای سوبولف در حوزه های لیپشیتز، از جمله عملگر ردیابی و مولفه عادی میدان های برداری
- تلفیقی از مفاهیم تحلیل عملکردی شامل فضاهای هیلبرت و مسائلی که می توان با این مفاهیم حل کرد، به جای جداسازی این دو
- معرفی ابزارهای تحلیلی مورد نیاز برای مسائل فیزیکی مورد علاقه مانند امواج هارمونیک زمان، جریان استوکس و دارسی، معادلات دیفرانسیل سطح، مسائل حفره ماکسول و غیره.
- انواع مسائلی که در هر فصل به تقویت و گسترش مواد کمک می کنند، از جمله کاربرد در مکانیک سیالات و جامدات
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Preface
Authors
Part I: Fundamentals
1. Distributions
1.1 The test space
1.2 Distributions
1.3 Distributional differentiation
1.4 Convergence of distributions
1.5 A fundamental solution (*)
1.6 Lattice partitions of unity
1.7 When the gradient vanishes (*)
1.8 Proof of the variational lemma (*)
Final comments and literature
Exercises
2. The homogeneous Dirichlet problem
2.1 The Sobolev space H1(O)
2.2 Cuto and molli cation
2.3 A guided tour of mollification (*)
2.4 The space H10(O)
2.5 The Dirichlet problem
2.6 Existence of solutions
Final comments and literature
Exercises
3. Lipschitz transformations and Lipschitz domains
3.1 Lipschitz transformations of domains
3.2 How Lipschitz maps preserve H1 behavior (*)
3.3 Lipschitz domains
3.4 Localization and pullback
3.5 Normal elds and integration on the boundary
Final comments and literature
Exercises
4. The nonhomogeneous Dirichlet problem
4.1 The extension theorem
4.2 The trace operator
4.3 The range and kernel of the trace operator
4.4 The nonhomogeneous Dirichlet problem
4.5 General right-hand sides
4.6 The Navier-Lamé equations (*)
Final comments and literature
Exercises
5. Nonsymmetric and complex problems
5.1 The Lax-Milgram lemma
5.2 Convection-di usion equations
5.3 Complex and complexified spaces
5.4 The Laplace resolvent equations
5.5 The Ritz-Galerkin projection (*)
Final comments and literature
Exercises
6. Neumann boundary conditions
6.1 Duality on the boundary
6.2 Normal components of vector fields
6.3 Neumann boundary conditions
6.4 Impedance boundary conditions
6.5 Transmission problems (*)
6.6 Nonlocal boundary conditions (*)
6.7 Mixed boundary conditions (*)
Final comments and literature
Exercises
7. Poincar e inequalities and Neumann problems
7.1 Compactness
7.2 The Rellich-Kondrachov theorem
7.3 The Deny-Lions theorem
7.4 The Neumann problem for the Laplacian
7.5 Compact embedding in the unit cube
7.6 Korn's inequalities (*)
7.7 Traction problems in elasticity (*)
Final comments and literature
Exercises
8. Compact perturbations of coercive problems
8.1 Self-adjoint Fredholm theorems
8.2 The Helmholtz equation
8.3 Compactness on the boundary
8.4 Neumann and impedance problems revisited
8.5 Kirchho plate problems (*)
8.6 Fredholm theory: the general case
8.7 Convection-diffusion revisited
8.8 Impedance conditions for Helmholtz (*)
8.9 Galerkin projections and compactness (*)
Final comments and literature
Exercises
9. Eigenvalues of elliptic operators
9.1 Dirichlet and Neumann eigenvalues
9.2 Eigenvalues of compact self-adjoint operators
9.3 The Hilbert-Schmidt theorem
9.4 Proof of the Hilbert-Schmidt theorem (*)
9.5 Spectral characterization of Sobolev spaces
9.6 Classical Fourier series
9.7 Steklov eigenvalues (*)
9.8 A glimpse of interpolation (*)
Final comments and literature
Exercises
Part II: Extensions and Applications
10. Mixed problems
10.1 Surjectivity
10.2 Systems with mixed structure
10.3 Weakly imposed Dirichlet conditions
10.4 Saddle point problems
10.5 The mixed Laplacian
10.6 Darcy flow
10.7 The divergence operator
10.8 Stokes flow
10.9 Stokes-Darcy flow
10.10 Brinkman flow
10.11 Reissner-Mindlin plates
Final comments and literature
Exercises
11. Advanced mixed problems
11.1 Mixed form of reaction-diffusion problems
11.2 More inde nite problems
11.3 Mixed form of convection-di usion problems
11.4 Double restrictions
11.5 A partially uncoupled Stokes-Darcy formulation
11.6 Galerkin methods for mixed problems
Final comments and literature
Exercises
12. Nonlinear problems
12.1 Lipschitz strongly monotone operators
12.2 An embedding theorem
12.3 Laminar Navier-Stokes flow
12.4 A nonlinear diffusion problem
12.5 The Browder-Minty theorem
12.6 A nonlinear reaction-diffusion problem
Final comments and literature
Exercises
13. Fourier representation of Sobolev spaces
13.1 The Fourier transform in the Schwartz class
13.2 A first mix of Fourier and Sobolev
13.3 An introduction to H2 regularity
13.4 Topology of the Schwartz class
13.5 Tempered distributions
13.6 Sobolev spaces by Fourier transforms
13.7 The trace space revisited
13.8 Interior regularity
Final comments and literature
Exercises
14. Layer potentials
14.1 Green's functions in free space
14.2 Single and double layer Yukawa potentials
14.3 Properties of the boundary integral operators
14.4 The Calderón calculus
14.5 Integral form of the layer potentials
14.6 A weighted Sobolev space
14.7 Coulomb potentials
14.8 Boundary-field formulations
Final comments and literature
Exercises
15. A collection of elliptic problems
15.1 T-coercivity in a dual Helmholtz equation
15.2 Diffusion with sign changing coefficient
15.3 Dependence with respect to coefficients
15.4 Obstacle problems
15.5 The Signorini contact problem
15.6 An optimal control problem
15.7 Friction boundary conditions
15.8 The Lions-Stampacchia theorem
15.9 Maximal dissipative operators
15.10 The evolution of elliptic operators
Final comments and literature
Exercises
16. Curl spaces and Maxwell's equations
16.1 Sobolev spaces for the curl
16.2 A first look at the tangential trace
16.3 Curl-curl equations
16.4 Time-harmonic Maxwell's equations
16.5 Two de Rham sequences
16.6 Maxwell eigenvalues
16.7 Normally oriented trace fields
16.8 Tangential trace spaces and their rotations
16.9 Tangential definition of the tangential traces
16.10 The curl-curl integration by parts formula
Final comments and literature
Exercises
17. Elliptic equations on boundaries
17.1 Surface gradient and Laplace-Beltrami operator
17.2 The Poincar e inequality on a surface
17.3 More on boundary spaces
Final comments and literature
Exercises
Appendix A: Review material
A.1 The divergence theorem
A.2 Analysis
A.3 Banach spaces
A.4 Hilbert spaces
Appendix B: Glossary
B.1 Commonly used terms
B.2 Some key spaces
Bibliography
Index
توضیحاتی در مورد کتاب به زبان اصلی :
Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems.
Features
- A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields
- An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two
- Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc.
- A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics