توضیحاتی در مورد کتاب Virtual prototyping & bio manufacturing in medical applications
نام کتاب : Virtual prototyping & bio manufacturing in medical applications
ویرایش : 2
عنوان ترجمه شده به فارسی : نمونه سازی مجازی و تولید زیستی در کاربردهای پزشکی
سری :
نویسندگان : Bopaya Bidanda, Paulo Jorge Bártolo
ناشر : Springer
سال نشر : 2021
تعداد صفحات : 299
ISBN (شابک) : 9783030358808 , 3030358801
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 11 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Contents
1 Optimised Vascular Network for Skin Tissue Engineering by Additive Manufacturing
1.1 Introduction
1.2 Design of Vascular Network
1.2.1 Macro-Scale Design
1.2.2 Micro-Scale Design
1.2.2.1 Branch Angle and Vessel Diameters
1.2.2.2 WSS and Recirculation Areas
1.2.2.3 Daughter Vessel Asymmetry Ratio
1.3 The Application: Optimised Vascular Network Design for Skin Tissue Engineering
1.3.1 Additive Manufacturing Technologies for Biomanufacturing
1.3.2 Materials and Methods
1.3.3 In Vitro Testing
1.4 Results and Discussion
1.4.1 Cytotoxicity Testing for Photoinitiators
1.4.2 The Printed Vascular Network
1.4.3 In Vitro Testing
1.5 Conclusion
References
2 Virtual Bone Surgery
2.1 Introduction
2.2 State of the Art in Bone Surgery Simulation
2.2.1 Current State of Surgical Simulation
2.2.2 Key Technologies
2.3 Medical Image Processing and Segmentation
2.3.1 Imaging Procedures
2.3.2 Image Processing
2.4 Geometric Modeling and Data Manipulation
2.4.1 Volume Modeling
2.4.2 Data Manipulation
2.5 Graphic Rendering
2.5.1 Surface Rendering
2.5.2 Volume Rendering
2.6 Haptic Rendering
2.6.1 Force Modeling
2.6.2 Collision Detection and Force Generation
2.7 Auditory Rendering
2.7.1 Sound Modeling
2.7.2 Sound Rendering
2.8 Conclusion
References
3 Three-Dimensional Medical Imaging: Conceptsand Applications
3.1 Introduction
3.2 Acquisition
3.2.1 Computer Tomography (CT)
3.2.2 Cone Beam Computed Tomography (CBCT)
3.2.3 Magnetic Resonance Imaging (MRI)
3.2.4 Ultrasonography (US)
3.2.5 Digital Imaging and Communications in Medicine (DICOM)
3.3 Preprocessing
3.3.1 Noise Filtering
3.3.2 Edge Detection
3.3.3 Contrast Enhancement
3.4 Segmentation
3.4.1 Thresholding
3.4.2 Region Growing
3.4.3 Watershed
3.5 Representation
3.5.1 Quadtree
3.5.2 Pyramid (Multiscale Imaging)
3.6 Volume Rendering
3.6.1 Isosurface Rendering
3.6.2 Direct Volume Rendering
3.7 3D Printing and Biofabrication
3.8 Conclusions
References
4 Computer Aided Tissue Engineering Scaffolds
4.1 Introduction
4.1.1 Requirements of Tissue Engineering Scaffolds
4.1.2 Application of RP in TE Scaffold Fabrication
4.2 Methodology
4.2.1 Concept Verification
4.2.2 Validation of CASTS
4.2.3 Duraform™ Polyamide Scaffolds
4.2.4 Biomaterial Scaffolds
4.2.4.1 Poly-Ether-Ether-Ketone (PEEK) and Hydroxyapatite (HA)
4.2.4.2 Polycaprolactone (PCL)
4.3 Results and Discussion
4.3.1 Pure PEEK Scaffolds
4.3.2 PEEK-HA Composite Scaffolds
4.3.3 Polycaprolactone (PCL) Scaffolds
4.4 Conclusion
References
5 Additive Biomanufacturing Processes to Fabricate Scaffolds for Tissue Engineering
5.1 Introduction
5.2 Conventional Fabrication Techniques
5.3 Additive Manufacturing Techniques for Tissue Engineering
5.3.1 Photo-Fabrication Process
5.3.1.1 Vat-Photopolymerization
5.3.1.2 Non-chemical Photo-Fabrication Processes
5.3.2 Powder-Bed Fusion Process
5.3.3 Extrusion-Based Processes
5.3.4 Binder Jetting Processes
5.4 Conclusions
References
6 Engineering Oriented Scaffolds for Directing NeuronalRegeneration
6.1 Introduction: Neuronal Regeneration Following Injury
6.1.1 Introduction to the Nervous System
6.1.1.1 Anatomy of the Spinal Cord
6.1.1.2 Anatomy of the PNS
6.1.1.3 Support Cells of the Nervous System
6.1.1.4 Neuronal Pathfinding
6.1.2 Peripheral Nerve Injuries
6.1.2.1 Current Therapies and Challenges
6.1.3 Spinal Cord Injury
6.1.3.1 Current Therapies and Challenges
6.1.4 Design Criteria for Tissue Engineered Nerve Regeneration Platform
6.2 Engineering Aligned Neuronal Guidance Therapies
6.2.1 Material of Choice
6.2.2 Advanced Fabrication Techniques for Oriented Scaffolds
6.2.2.1 Aligned Substrates
6.2.2.2 Aligned Nerve Guidance Conduits and Channels
6.2.2.3 Aligned Gels and Conduit-Fillers
6.3 Epilogue: Considerations for Optimal Regeneration Platforms- a Combined Approach
References
7 The Electrospinning Process
7.1 Introduction
7.2 The Electrospinning Process
7.3 Process Classification
7.3.1 Solution Versus Melt Electrospinning
7.3.2 Emulsion and Suspension Electrospinning
7.3.3 Co-axial and Multi-jet Electrospinning
7.3.4 Near-Field Electrospinning
7.4 The Effect of Material and Processing Parameters
7.4.1 Material Parameters
7.4.1.1 Viscosity, Molecular Weight and Concentration
7.4.1.2 Surface Tension
7.4.1.3 Conductivity
7.4.2 Process Parameters
7.4.2.1 Electric Field and Flow Rate
7.4.2.2 Tip to Collector Distance
7.4.3 Ambient Parameters (Humidity and Temperature)
7.5 Electrospinning Variants
7.6 Materials
References
8 A Review of Hybrid Biomanufacturing Systems Applied in Tissue Regeneration
8.1 Introduction
8.2 Additive Biomanufacturing
8.2.1 Inkjet-Based Processes
8.2.2 Material Extrusion
8.2.3 Laser Direct Writing
8.3 Hybrid Techniques
8.3.1 Basic Multi-Head Bioprinters
8.3.2 Semi-Hybrid Multi-Head Bioprinters
8.3.3 Fully Hybrid Biomanufacturing Systems
8.3.4 Development of Advanced Printing Heads
8.4 Conclusions
References
9 Low Back Pain: Additive Manufacturing for Disc Degeneration and Herniation Repair
9.1 Low Back Pain: A Global Problem
9.2 Degenerative Disc Disease and Herniation
9.2.1 Historical Perspective
9.2.2 The IVD Degeneration Cycle
9.2.3 Annular Fissures
9.2.4 Disc Herniation
9.3 Conservative Management Versus Surgical Treatments for Lumbar Disc Herniation
9.4 Emerging Technologies for the Repair and/or Regeneration of Prolapsed and Herniated Discs
9.4.1 Recent Advances in Nucleus Pulposus Regeneration
9.4.2 Annulus Fibrosus Repair
9.4.2.1 Mechanical Closure Devices
9.4.2.2 Injectable Hydrogels
9.4.2.3 Electrospun Meshes
9.4.2.4 3D Printed Scaffolds
9.4.3 Combined AF–NP Repair Approaches
9.5 Conclusion
References
10 A Review on Powder Bed Fusion Additive Manufacturing for Metallic Fixation Implants
10.1 Introduction
10.2 Bone Characteristics
10.2.1 Bone as a Material
10.2.2 Bone Types
10.2.3 Bone Healing
10.2.3.1 Indirect Bone Healing
10.2.3.2 Direct Bone Healing
10.3 Metallic Biomaterials
10.3.1 Titanium and Its Alloys
10.3.2 Stainless Steel
10.3.3 Cobalt Chromium
10.4 Powder Bed Fusion Techniques
10.4.1 Electron Beam Melting
10.4.1.1 Microstructure
10.4.1.2 Mechanical and Physical Properties
10.4.1.3 Biological Properties
10.4.2 Selective Laser Melting
10.4.2.1 Microstructure
10.4.2.2 Mechanical and Physical Properties
10.4.2.3 Biological Properties
10.5 Additive Manufactured Internal Bone Fixation Implants
10.6 Conclusions and Research Challenges
References
11 Scaffold Design for Nerve Regeneration
11.1 Introduction
11.2 Neuroanatomy
11.2.1 Neuron
11.2.2 Central and Peripheral Nervous System
11.2.3 Nerve Damage and Regeneration
11.2.3.1 Peripheral Nerve Injuries
11.2.3.2 Nerve Injury Classification
11.2.3.3 Nerve Regeneration
11.2.4 Traditional Treatment Methods
11.2.4.1 Nerve Suture
11.2.4.2 Nerve Graft
11.3 Nerve Scaffold
11.3.1 Design Requirements
11.3.2 Fabrication Techniques
11.3.2.1 Conventional Techniques
11.3.2.2 Additive Manufacturing Techniques
11.4 Conclusion
References
Index