توضیحاتی در مورد کتاب Wastewater Treatment: Recycling, Management, and Valorization of Industrial Solid Wastes
نام کتاب : Wastewater Treatment: Recycling, Management, and Valorization of Industrial Solid Wastes
ویرایش : 1
عنوان ترجمه شده به فارسی : تصفیه فاضلاب: بازیافت، مدیریت و ارزش گذاری پسماندهای جامد صنعتی
سری :
نویسندگان : Irene Samy Fahim (editor), Lobna Said (editor)
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 418
ISBN (شابک) : 1032404698 , 9781032404691
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 20 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Title Page
Copyright Page
Contents
About the Editors
List of Contributors
Chapter 1: Water Importance and Pollution Sources—Recommended Limits of Pollutants
1.1. Introduction
1.2. Wastewater Classification
1.2.1. Domestic Wastewater
1.2.2. Industrial Wastewater
1.3. Dye, Paint, and Textile Manufacturing
1.3.1. Dyes
1.3.1.1. Dye Classification
1.3.1.2. Synthetic Dyes
1.3.1.3. Azo Dyes
1.3.1.4. Anthraquinone Dyes
1.3.1.5. Naming Dyes
1.3.1.6. Dye Wastewater
1.3.2. Textile Industry
1.3.2.1. Raw Materials of Textile Manufacturing
1.3.2.2. Textile Manufacturing Process
1.3.2.3. Industrial Textile Wastewater Processing
1.3.2.4. Textile Wastewater Treatment
1.3.3. Paints
1.3.3.1. Paints Classification
1.3.3.2. Raw Materials of Paint Manufacturing Industry
1.3.3.3. Paint Manufacturing Process
1.3.3.4. Paint Wastewater
1.4. Characteristics of Dyes, Paints, and Textile Wastewater/ Existing Regulations
1.4.1. Introduction
1.4.2. Types of Textile Fibers and Their Dyes
1.4.2.1. Dyes for Cellulose Fibers
1.4.2.2. Dyes for Protein Fibers
1.4.2.3. Dyes for Synthetic Fibers
1.4.3. Characterization of Textile Wastewater Effluent
1.4.4. Characterization of Paint Wastewater Effluent
1.4.5. Regulation
1.4.5.1. Laboratory Wastewater Test Understanding
1.4.5.2. Parameters
1.5. Conclusion
Acknowledgment
References
Chapter 2: Microbial Bioremediation of Pesticides and Future Scope
2.1. Introduction
2.2. Effect of Pesticides on Human Health and Environment
2.3. Microbial Remediation of Pesticides
2.3.1. Bacterial Remediation of Pesticides
2.3.2. Fungal Remediation of Pesticides
2.3.3. Algal Role in Remediation of Pesticides
2.4. Limitations of Bioremediation
2.5. Future Prospects for Bioremediation of Pesticides Other Than Microbial Remediation
2.6. Conclusion
References
Chapter 3: Applied Techniques for Wastewater Treatment: Physicochemical and Biological Methods
3.1. Introduction
3.2. Physicochemical Techniques
3.2.1. Coagulation-Flocculation Process
3.2.2. Electrocoagulation
3.2.3. Sedimentation
3.2.3.1. Sedimentation Theory
3.2.3.2. Sedimentation Tanks in Wastewater Treatment
3.2.3.3. Primary Sedimentation Tank
3.2.3.4. Secondary Sedimentation Tank
3.2.3.5. Imhoff Sedimentation Tank
3.2.4. Flotation
3.2.5. Filtration
3.2.5.1. Gravity Filtration
3.2.5.2. Membrane Filtration
3.2.5.3. Ultra-Filtration and Micro-Filtration
3.2.5.4. Reverse Osmosis
3.2.5.5. Nano-Filtration
3.2.5.6. Electrodialysis
3.2.6. Oil Separation
3.2.6.1. Filtration-Based Materials
3.2.6.2. Metallic Mesh-Based Materials
3.2.6.3. Fabric/Textile-Based Materials
3.2.6.4. Absorption-Based Separation
3.2.6.5. Particle and Powdered Absorbents
3.2.6.6. Sponge-Based Materials
3.2.7. Ion Exchange
3.2.8. Chemical Oxidation
3.2.9. Electro-Oxidation Processes
3.2.10. Photochemical Oxidation
3.2.11. Advanced Oxidation Processes
3.2.11.1. Ozonation
3.2.11.2. Ultraviolet Radiation
3.2.11.3. Fenton’s Oxidation
3.3. Biological Treatment Processes
3.3.1. Aerobic Treatment Processes
3.3.1.1. Suspended Growth Treatment Processes
3.3.1.2. Attached Are Growth Treatment Processes “Biofilm”
3.3.2. Hybrid Processes
3.3.3. Anaerobic Treatment
3.3.3.1. Constructed Wetlands
3.4. Conclusion
Acknowledgment
References
Chapter 4: Adsorption as an Emerging Technology and Its New Advances of Eco-Friendly Characteristics: Isotherm, Kinetic, and Thermodynamic Analysis
4.1. Introduction
4.2. Factors Affecting Adsorption Process
4.2.1. Effect of Contact Time
4.2.2. Effect of Agitation Rate and Time
4.2.3. Effect of Temperature
4.2.4. Effect of pH
4.2.5. Effect of Adsorbent Dose
4.2.6. Effect of Initial Pollutant Concentration
4.2.7. Effect of Ionic Strength
4.2.8. Effect of Surface Area and Porosity
4.3. Adsorbent Types
4.3.1. Natural Adsorbents
4.3.1.1. Clay Minerals
4.3.1.2. Zeolites
4.3.2. Industrial By-product
4.3.3. Agriculture Wastes
4.3.4. Biological Biomasses
4.3.4.1. Fungi
4.3.4.2. Bacteria
4.3.4.3. Yeast
4.3.4.4. Algae
4.3.5. Nano-Sorbents
4.3.5.1. Nano-Adsorbent Synthesis
4.3.5.2. Nano-Metal Oxides
4.3.5.3. Polymeric Nano-Sorbents
4.3.5.4. Composite Material Nano-Sorbents
4.4. The Isothermal Models of the Adsorption Process
4.4.1. One-Parameter Isotherm
4.4.1.1. Henry’s Isotherm Model
4.4.2. Two-Parameter Isotherm
4.4.2.1. Langmuir Model
4.4.2.2. Freundlich Model
4.4.2.3. Dubinin–Radushkevich Model
4.4.2.4. Temkin Model
4.4.2.5. Flory–Huggins Model
4.4.2.6. Hill Model
4.4.2.7. Halsey Model
4.4.2.8. Harkins–Jura Model
4.4.2.9. Elovich Model
4.4.2.10. Kiselev Model
4.4.3. Three-Parameter Isotherm
4.4.3.1. Redlich–Peterson Model
4.4.3.2. Toth Model
4.4.3.3. Sips Model
4.4.3.4. Kahn Model
4.4.3.5. Koble–Corrigan Model
4.4.3.6. Radke–Prausnitz Model
4.4.3.7. Langmuir–Freundlich Model
4.4.3.8. Jossens Model
4.4.4. Four-Parameter Isotherm
4.4.4.1. Fritz–Schlunder Model
4.4.4.2. Baudu Model
4.4.4.3. Weber–Van Vliet Model
4.4.4.4. Marczewski–Jaroniec Model
4.4.5. Five-Parameter Isotherm
4.4.5.1. Fritz–Schlunder Model
4.5. Generalized Isothermal Model
4.5.1. The Generalized Brouers-Sotolongo Isotherm
4.6. Adsorption Isotherm Analysis
4.7. The Kinetic Models of the Adsorption Process
4.7.1. First-Order Model
4.7.2. Second-Order Model
4.7.3. Pseudo-First-Order Model
4.7.4. Pseudo-Second-Order Model
4.7.5. InTRA-Particle Diffusion Model
4.7.6. Avrami Model
4.7.7. Elovich Model
4.8. Generalized Kinetic Model
4.8.1. The Brouers–Sotolongo Kinetic
4.9. Kinetic Analysis
4.10. Thermodynamic Analysis
4.11. Conclusion
Acknowledgement
References
Chapter 5: Potential of Algae in the Phyco-Remediation of Industrial Wastewater and Valorization of Produced Biomass
5.1. Introduction
5.2. Algae Cultivation for Biomass Production
5.3. Role of Algae in the Removal of Heavy Metals and Emerging Contaminants
5.4. Reactor Configurations for Wastewater Treatment Using Algae
5.4.1. Photobioreactors Used in the Bioremediation of Wastewater
5.4.2. Suspended Microalgae Systems for Wastewater Treatment
5.4.3. Immobilized Microalgae Systems for Wastewater Treatment
5.4.4. Microalgae Turf Scrubber
5.4.5. Fluidized Bed Systems
5.5. Algae-Bacteria Interaction for Wastewater Bioremediation
5.6. Algal Wastewater Treatment: Concept of Circular Bioeconomy
5.7. Algal Biorefinery Contributing to Bioeconomy
5.8. End-Use Applications of Microalgae Cultivated in Wastewaters
5.9. Conclusions
References
Chapter 6: Recycling of Fruit By-Products for Wastewater Treatment Applications
6.1. Introduction
6.2. Recycling Routes
6.3. Water Treatment Applications
6.3.1. Removal of Synthetic Dyes
6.3.2. Removal of Heavy Metal
6.3.3. Removal of Pharmaceutical Pollutants
6.4. Economic Feasibility for Industrial Applications
6.5. Conclusion
References
Chapter 7: Metal Oxide-Based Antibacterial Nano-Agents for Wastewater Treatment
7.1. Introduction
7.2. Wastewater Pollution and Impacts
7.3. Nanostructured Materials for Wastewater Management
7.3.1. Nano-Metal Oxide Particles
7.3.2. Preparation of Nano-Metal Oxide Particles
7.3.2.1. Chemical Methodology
7.3.2.2. Biosynthesis Procedure
7.3.2.3. Sol-Gel Technique
7.3.2.4. Co-Precipitation Method
7.3.2.5. Electrochemical Method
7.3.2.6. Wet Chemical Approach
7.3.2.7. Pyrolytic
7.3.2.8. Microwave-Assisted Technique
7.3.2.9. Hydrothermal/Solvothermal Method
7.4. Antibacterial Mechanisms of Metal Oxide NPs
7.4.1. Cell Walls’ Biochemical Nature and Adsorption Methods
7.4.2. Cell Membranes’ Electrostatic Contact Damages
7.4.3. Disturbance of the Metal/Metal Ion Hometal Oxidestasis
7.4.4. Oxidative Stress and ROS Production
7.4.5. Dysfunction of Proteins and Enzymes
7.4.6. Inhibition of Signal Transduction and Toxicity
7.4.7. Photokilling
7.4.8. Other Strategies
7.5. Concerns About the Applications of Nano-Metal Oxide Particles for Bacterial Resistance
7.5.1. NPs’ Cytotoxicity
7.5.2. NPs’ Dosage and Clearance
7.5.3. Size, Morphology, and Stability of the NPs
7.5.4. NPs’ Interactions with the Cells
7.5.5. Scale-Up/Optimization
7.5.6. Instrumentation and Variation in Microbes and Human Diseases
7.6. Conclusion
7.7. Challenges and Future Perspectives
Acknowledgments
References
Chapter 8: Electrochemical Treatment as a Promising Advanced Technique for Industrial Wastewater Treatment
8.1. Introduction
8.1.1. Water Pollution Sources and Types
8.1.2. Treatment Techniques of Wastewater
8.1.3. Categories of Electrochemical Wastewater Treatment Methods
8.1.3.1. Electro-Oxidation of Wastewater
8.1.3.2. Electro-Coagulation (EC)
8.2. Design Parameters and Factors Affecting the Electrochemical Treatment Efficiency
8.2.1. Electrode Material and Shape
8.2.2. Distance between Electrodes
8.2.3. Current Density
8.2.4. pH
8.2.5. Conductivity
8.2.6. Temperature
8.2.7. Reaction Time
8.3. The Removal Efficiency of Pollutants in Several Types of Industrial Wastewater
8.3.1. Food Industry
8.3.2. Textile Industry
8.3.3. Paper and Pulp Industry
8.3.4. Metal Plating Industry
8.3.5. Petroleum and Oil Industry
8.4. Techno-Economic Evaluation for Different Types of Electrochemical Treatment
8.5. Conclusion and Recommendations
References
Chapter 9: Lignocellulosic-Based Sorbents: A Sustainable Framework for the Adsorption of Pharmaceutical and Heavy Metal Pollutants in Wastewater
9.1. Introduction
9.1.1. Lignocellulosic Materials
9.1.2. Preparation of Lignocellulosic-Based Bioadsorbents
9.1.3. Characterization Techniques
9.1.3.1. Pore Volume, Size and Surface Area
9.1.3.2. FTIR Analysis
9.1.3.3. Zeta Potential and pHZPC Analyses
9.1.3.4. Optical and SEM/TEM Microscopy
9.1.3.5. XRD Analysis
9.1.3.6. XPS Analysis
9.2. Removal of Pharmaceuticals Through Bioadsorption Using Lignocellulosic Materials
9.2.1. Pharmaceuticals in the Environment
9.2.2. Treatment Methods for Pharmaceutical-Laden Wastewater
9.2.3. Adsorption
9.2.3.1. Utilization of Lignocellulosic Biomass
9.2.4. Adsorption Modeling
9.2.4.1. Adsorption Kinetics
9.2.4.2. Adsorption Isotherm
9.2.4.3. Adsorption Thermodynamics
9.2.5. Adsorption Mechanisms Involved During the Adsorption of Pharmaceutical Wastewater
9.2.6. Regeneration Capabilities of Exhausted Bioadsorbents Loaded with Pharmaceutical Pollutants
9.3. Removal of Heavy Metals Through Bioadsorption Using Lignocellulosic Materials
9.3.1. Occurrence and Fate of Heavy Metals in the Environment
9.3.2. Utilization of Lignocellulosic Biomass to Remove Heavy Metals
9.3.3. Effects of Process Variables on Heavy Metal Removal
9.3.3.1. Effect of pH
9.3.3.2. Effect of Temperature
9.3.3.3. Effect of Initial Concentration
9.3.3.4. Effect of Contact Time
9.3.3.5. Effect of Adsorbent Dose
9.3.3.6. Effect of Coexisting Ions
9.3.4. Adsorption Mechanisms Associated with the Adsorption of Metal Ions
9.3.5. Regeneration and Reusability Possibilities of Exhausted Bioadsorbents Loaded with Metal Ions
9.4. Cost Analysis
9.5. Conclusion and Future Prospects
References
Chapter 10: Valorization of Industrial Solid Waste to Green Sustainable Products
10.1. Types of Wastes
10.2. Solid Waste (SW)
10.3. Industrial Solid Waste (ISW)
10.4. Sources of (ISW)
10.5. Classification of (ISW)
10.5.1. The Classification of Industrial Solid Wastes Referring to Nature
10.5.2. The Classification of ISW Referring to the Pollution Characteristics
10.5.3. The Classification of ISW Referring to the Industrial Sectors
10.5.4. The Classification of ISW Referring to the Industrial Process
10.6. Industrial Waste Management
10.6.1. Life Cycle Assessment
10.6.2. Processing and Control
10.6.3. Treatment and Pretreatment
10.7. Egypt Goes Green
10.7.1. The Industrial Waste Management System in Egypt
10.7.2. Solid Waste Production and Treatment in Egypt
10.7.3. The Egyptian Legal Framework for Solid Waste Management
10.7.4. Concerns About the Situation of Solid Waste Management in Egypt
10.7.5. Sustainable Strategy for Solid Waste Management in Egypt
10.7.6. Major Government Projects
10.8. Conclusion
References
Chapter 11: Reclaimed Irrigation Water Affect Soil Properties and Lettuce (Lactuca Sativa L.) Growth, Yield and Quality
11.1. Introduction
11.2. Materials and Methods
11.2.1. Experimental Site
11.2.2. Experimental Design and Plot Management
11.2.3. Data Collection and Chemical Analysis
11.2.4. Statistical Data Analysis
11.3. Results
11.3.1. Physico-Chemical Quality of Irrigation Water
11.3.2. Nutrients Supplied by the Irrigation Waters
11.3.3. Effects of Irrigation Waters on Growth, Yield and Quality of Lettuce Crop
11.3.3.1. Growth and Yields
11.3.3.2. Quality of the Harvested Leaves: Nutrients (N, P, K, Ca and Mg) Content in the Leaves
11.3.3.3. Quality of the Harvested Leaves: Heavy Metal (Cu, Fer, Zn, Pb and Cd) Content in the Leaves
11.3.3.4. Quality of the Harvested Leaves: Microbial Analyses
11.3.4. Effect of Irrigation Waters on Soil Nutrients and Microbial Contamination
11.3.4.1. Macronutrients (N, P and K) and Heavy Metal Content in the Soil
11.3.4.2. Microbial Contamination of the Irrigated Soils
11.4. Discussion
11.4.1. Nutrient Supply and Quality of the Irrigation Waters
11.4.2. Effects of Irrigation Waters on Growth, Yield and Quality of Lettuce
11.4.3. Effects of Irrigation Waters on Soil Nutrients and Microbial Contamination
11.5. Conclusions
Acknowledgments
References
Chapter 12: Artificial Intelligence and Machine Learning of Petroleum Wastewater Treatment by Nanofilteration Membranes
12.1. Introduction
12.2. Valorization of Agrowaste for Membrane Process
12.3. Artificial Intelligence in Biopolymer Membrane: Optimization and Sustainability
12.4. Membrane Technology
12.5. Treatment of Petroleum Wastewater with Biochar Membranes
12.6. Conclusion
References
Index