Wetting of Real Surfaces

دانلود کتاب Wetting of Real Surfaces

35000 تومان موجود

کتاب خیس شدن سطوح واقعی نسخه زبان اصلی

دانلود کتاب خیس شدن سطوح واقعی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 11


توضیحاتی در مورد کتاب Wetting of Real Surfaces

نام کتاب : Wetting of Real Surfaces
عنوان ترجمه شده به فارسی : خیس شدن سطوح واقعی
سری : De Gruyter Studies in Mathematical Physics; 19
نویسندگان :
ناشر : De Gruyter
سال نشر : 2013
تعداد صفحات : 188
ISBN (شابک) : 9783110258790
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 9 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface\nNotation\n1 What is surface tension?\n 1.1 Surface tension and its definition\n 1.2 Physical origin of the surface tension of liquids\n 1.3 Temperature dependence of the surface tension\n 1.4 Surfactants\n 1.5 The Laplace pressure\n 1.6 Surface tension of solids\n 1.7 Values of surface tensions of solids\n Appendix 1A. The short-range nature of intermolecular forces\n Appendix 1B. The Laplace pressure from simple reasoning\n Bullets\n References\n2 Wetting of ideal surfaces\n 2.1 What is wetting? The spreading parameter\n 2.2 The Young equation\n 2.3 Wetting of flat homogeneous curved surfaces\n 2.4 Line tension\n 2.5 Disjoining pressure\n 2.6 Wetting of an ideal surface: influence of absorbed liquid layers and the liquid vapor\n 2.7 Gravity and wetting of ideal surfaces: a droplet shape and liquid puddles\n 2.8 The shape of the droplet and the disjoining pressure\n 2.9 Distortion of droplets by an electric field\n 2.10 Capillary rise\n 2.11 The shape of a droplet wetting a fiber\n 2.12 Wetting and adhesion. The Young-Dupre equation\n 2.13 Wetting transitions on ideal surfaces\n 2.14 How the surface tension is measured?\n 2.14.1 The Du Nouy ring and the Wilhelmy plate methods\n 2.14.2 The pendant drop method\n 2.14.3 Maximum bubble pressure method\n 2.14.4 Dynamic methods of measurement of surface tension\n 2.15 Measurement of surface tension of solids\n Appendix 2A. Transversality conditions\n Appendix 2B. Zisman plot\n Bullets\n References\n3 Contact angle hysteresis\n 3.1 Contact angle hysteresis: its sources and manifestations\n 3.2 Contact angle hysteresis on smooth homogeneous substrates\n 3.3 Strongly and weakly pinning surfaces\n 3.4 Qualitative characterization of the pinning of the triple line\n 3.5 The zero eventual contact angle of evaporated droplets and its explanation\n 3.6 Contact angle hysteresis and line tension\n 3.7 More physical reasons for the contact angle hysteresis on smooth ideal surfaces\n 3.8 Contact angle hysteresis on chemically heterogeneous smooth surfaces: the phenomenological approach. Acquaintance with the apparent contact angle\n 3.9 The phenomenological approach to the hysteresis of the contact angle developed by Vedantam and Panchagnula\n 3.10 The macroscopic approach to the contact angle hysteresis, the model of Joanny and de Gennes\n 3.10.1 Elasticity of the triple line\n 3.10.2 Contact angle hysteresis in the case of a dilute system of defects\n 3.10.3 Surfaces with dense defects and the fine structure of the triple line\n 3.11 Deformation of the substrate as an additional source of the contact angle hysteresis\n 3.12 How the contact angle hysteresis can be measured\n 3.13 Roughness of the substrate and the contact angle hysteresis\n 3.14 Use of contact angles for characterization of solid surfaces\n Appendix 3A. A droplet on an inclined plane\n Bullets\n References\n4 Dynamics of wetting\n 4.1 The dynamic contact angle\n 4.2 The dynamics of wetting: the approach of Voinov\n 4.3 The dynamic contact angle in a situation of complete wetting\n 4.4 Dissipation of energy in the vicinity of the triple line\n 4.5 Dissipation of energy and the microscopic contact angle\n 4.6 A microscopic approach to the displacement of the triple line\n 4.7 Spreading of droplets: Tanner’s law\n 4.8 Superspreading\n 4.9 Dynamics of filling of capillary tubes\n 4.10 The drag-out problem\n 4.11 Dynamic wetting of heterogeneous surfaces\n Bullets\n References\n5 Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie models\n 5.1 General remarks\n 5.2 The Wenzel model\n 5.3 Wenzel wetting of chemically homogeneous curved rough surfaces\n 5.4 The Cassie-Baxter wetting model\n 5.5 The Israelachvili and Gee criticism of the Cassie-Baxter model\n 5.6 Cassie-Baxter wetting in a situation where a droplet partially sits on air\n 5.7 The Cassie-Baxter wetting of curved surfaces\n 5.8 Cassie-Baxter impregnating wetting\n 5.9 The importance of the area adjacent to the triple line in the wetting of rough and chemically heterogeneous surfaces\n 5.10 Wetting of gradient surfaces\n 5.11 The mixed wetting state\n 5.12 Considering the line tension\n Appendix 5A. Alternative derivation of the Young, Cassie, and Wenzel equations\n Bullets\n References\n6 Superhydrophobicity, superhydrophilicity, and the rose petal effect\n 6.1 Superhydrophobicity\n 6.2 Superhydrophobicity and the Cassie-Baxter wetting regime\n 6.3 Wetting of hierarchical reliefs: approach of Herminghaus\n 6.4 Wetting of hierarchical structures: a simple example\n 6.5 Superoleophobicity\n 6.6 The rose petal effect\n 6.7 Superhydrophilicity\n Bullets\n References\n7 Wetting transitions on rough surfaces\n 7.1 General remarks\n 7.2 Wetting transitions on rough surfaces: experimental data\n 7.3 Time-scaling of wetting transitions\n 7.4 Origin of the barrier separating the Cassie and Wenzel wetting states: the case of hydrophobic surfaces\n 7.4.1 The composite wetting state\n 7.4.2 Energy barriers and Cassie, Wenzel, and Young contact angles\n 7.5 Critical pressure necessary for wetting transition\n 7.6 Wetting transitions and de-pinning of the triple line; the dimension of a wetting transition\n 7.7 The experimental evidence for the 1D scenario of wetting transitions\n 7.8 Wetting transitions on hydrophilic surfaces\n 7.8.1 Cassie wetting of inherently hydrophilic surfaces: criteria for gas entrapping\n 7.8.2 Origin of the energetic barrier separating Cassie and Wenzel wetting regimes on hydrophilic surfaces\n 7.8.3 Surfaces built of ensembles of balls\n 7.9 Mechanisms of wetting transitions: the dynamics\n Bullets\n References\n8 Electrowetting and wetting in the presence of external fields\n 8.1 General remarks\n 8.2 Electrowetting\n 8.3 Wetting in the presence of external fields: a general case\n Bullets\n References\n9 Nonstick droplets\n 9.1 General remarks\n 9.2 Leidenfrost droplets\n 9.3 Liquid marbles\n 9.3.1 What are liquid marbles?\n 9.3.2 Liquid marble/support interface\n 9.3.3 Liquid marble/vapor interface\n 9.3.4 Effective surface tension of liquid marbles\n 9.3.5 Scaling laws governing the shape of liquid marbles\n 9.3.6 Properties of liquid marbles: the dynamics\n 9.3.7 Actuation of liquid marbles with electric and magnetic fields\n 9.3.8 Applications of liquid marbles\n 9.4 Nonstick drops bouncing a fluid bath\n Bullets\n References\nIndex




پست ها تصادفی