Whole-system approach to high-performance green buildings.

دانلود کتاب Whole-system approach to high-performance green buildings.

52000 تومان موجود

کتاب رویکرد کل سیستم به ساختمان های سبز با کارایی بالا. نسخه زبان اصلی

دانلود کتاب رویکرد کل سیستم به ساختمان های سبز با کارایی بالا. بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Whole-system approach to high-performance green buildings.

نام کتاب : Whole-system approach to high-performance green buildings.
عنوان ترجمه شده به فارسی : رویکرد کل سیستم به ساختمان های سبز با کارایی بالا.
سری :
نویسندگان :
ناشر : Artech house
سال نشر : 2016
تعداد صفحات : 298
ISBN (شابک) : 9781608079599 , 1608079597
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 8 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


A Whole-System Approach toHigh-Performance Green Buildings
Contents
Preface
Acknowledgments
Chapter 1 Scope and Scale of the Challenge
1.1 Impact of the Built Environment
1.2 The Emerging Market Drivers and Demand for Sustainable Buildings
1.3 Thought Leadership and the World Green Building Movement
1.3.1 Building Environmental Assessment Methods
1.3.2 Trends
1.3.3 Common International Assessment Methodology
1.3.4 Differences Among Schemes
1.3.5 Certification—Barrier or Enabler for Integrative Design?
1.3.6 Pushing the Boundaries
1.4 Creating a Market Pull for Sustainable Buildings
1.4.1 Responding to Client and Occupant Requirements
1.4.2 Growing Awareness That “Green” Buildings Pay
1.5 Compliance Drivers
1.5.1 Zero-Energy and Nearly Zero-Energy/Carbon Buildings
1.6 Whole System Thinking
Ten Key Methods for Achieving Sustainable Design and Operations Outcomes
References
Chapter 2 Whole System Approach
2.1 What Is “Whole System Thinking”?
2.1.1 Integrating the Design Process
2.1.2 IDP Design Team Organization
2.1.3 Benefits of Integrative, Collaborative, Multidisciplinary Design Team Engagement
2.2 Identifying and Exploiting the Opportunities for CAPEX and OPEX Reductions Offered by a Whole System Approach
2.2.1 Tunneling Through Cost Barriers
PassivHaus Standard
2.3 Avoiding Pitfalls
2.3.1 Risks of Relying on Overly Complex Technologies
2.3.2 Benefits of Adopting an Eco-Minimalistic Approach to Design
2.3.3 Closing the Performance Gap
Portcullis House
Portcullis House Key Lessons
2.4 Delivering Buildings Fit for People and the Planet
2.4.1 Human Health, Productivity, and Well-Being
2.4.2 Daylight
2.5 The Importance of Good Metrics
Achieving a High-Energy Performance Commercial Building
2.5.1 Measurement and Monitoring
2.6 Sustainable Construction Material Selection and Specification
2.6.1 What Is a Sustainable Construction Material?
2.6.2 What Environmental Impacts Are Associated with Construction Products?
2.6.3 Sustainable Construction Materials Assessment
2.6.4 Reducing Embodied Impacts at the Building Level
2.6.5 Sustainable Construction Materials and the Supply Chain
2.6.6 Other Approaches to Sustainable Material Selection
References
Chapter 3Designing for the Future: Design Quality and Future Proofing, Intelligent Buildings, Whole Life Value, and Closing the Performance Gap
3.1 Knowing Where You Want to Go
3.1.1 Establishing Goals, Targets, and Metrics
3.1.2 How Long Will Your Building Last?
3.2 Design Quality and Future Proofing
3.2.1 Overview
3.2.2 Green Vitruvius
3.2.3 The Fourth Dimension
Form Follows Function: London 2012 Olympic Park
3.2.4 Project Briefing and Communication
3.3 Intelligent Buildings
3.3.1 What Is an Intelligent Building?
3.3.2 Intelligent Building Guidelines
3.3.3 Key Criteria for Intelligent Buildings
3.3.4 Guidelines for Planning, Designing, and Managing Intelligent Buildings
3.4 Whole Life Value and Service Life Design: Economic Opportunities and Analysis
3.4.1 Introduction
3.4.2 Life Cycle Costing as Part of an Integrated Assessment of Sustainability
3.4.3 The Process of Assessing LCC as Part of Sustainable Procurement and Design
3.4.4 Key Focus Areas for Economic Assessment of Integrated Sustainability
3.5 Adopting “Soft Landings” to Ensure Buildings Perform Better in Use
3.5.1 Helping Clients
3.5.2 Helping Design Teams
3.5.3 Helping Contractors
3.5.4 Helping Building Occupiers and Managers
References
Chapter 4 Working with Nature and Natural Systems
4.1 Introduction to Bioclimatic Design
4.1.1 Climate-Excluding Versus Climate-Adaptive Buildings
4.1.2 Bioclimatic Design: Learning from Vernacular Architecture
4.2 Biomimicry: Learning from Nature
4.2.1 What Is Biomimicry?
4.2.2 Inspiration from Natural Forms
4.2.3 Inspiration from Natural Systems
4.2.4 Inspiration from Natural Processes
4.2.5 Conclusions
4.3 Green Roofs and Living Walls
4.3.1 Building-Integrated Vegetation
4.3.2 The Benefits of Building-Integrated Vegetation
4.3.3 Design Stage Opportunities and Risks
4.3.4 Operational Issues
4.4 Preserving and Enhancing Biodiversity in the Built Environment
4.4.1 What Is Biodiversity?
4.4.2 Biodiversity and Sustainable Buildings
4.4.3 Green and Blue Spaces
4.4.4 Biodiversity: Key Issues
4.4.5 Building Biodiversity
4.4.6 Legislative Drivers
References
Chapter 5 Energy-Optimizing Architectural Design and Engineering
5.1 Whole System/Whole Building Optimization
5.1.1 Step 0: Location, Location, Location
5.1.2 Step 1: Fabric First!
5.1.3 Step 2: Explore the Potential Offered by Passive Solutions
5.1.4 Step 3: Ensure All Active Energy Systems Are Highly Efficient
5.1.5 Step 4: Consider the On-Site Renewable Energy Generation Options
5.2 Sustainability of the Building Envelope
5.2.1 Introduction
5.2.2 Building Envelope Fundamentals
5.3 Optimizing Indoor Environmental Quality
5.3.1 Introduction
5.3.2 Thermal Comfort
5.3.3 Visual Comfort
5.3.4 Indoor Air Quality
5.3.5 Acoustic Environment
5.4 Effective Building Control and Monitoring
5.4.1 Introduction
5.4.2 Maximizing BMS Effectiveness
5.5 Low-Friction, Low-Pressure-Loss Engineering
5.5.1 Reducing the Environmental Impact of Moving Air and Water Around Buildings
5.5.2 Why Design for Low Friction and Low Pressure Loss?
5.5.3 Duct and Pipe Sizing: The Importance of Forensic Attention to Detail
5.5.4 Ductwork Layout
5.5.5 Pipework Layout and Design
5.5.6 Embodied Carbon Considerations
Case Study: How Modifying Typical Ductwork Layout and Specification Can Reduce Fan Power Requirement (and Operational Cost) by Over 80%
References
Chapter 6 Modeling and Simulation as a Design Tool
6.1 How Modeling Can Help Design Better Buildings
6.2 Determining Peak Loads
6.2.1 How Are Peak Loads Useful?
6.2.2 Applying the Peak Load Values in Practice
6.3 HVAC Sizing: Doing Better Than Rules of Thumb
6.3.1 Why Is HVAC Sizing Useful?
6.3.2 Studying HVAC Sizing in Practice
6.4 Natural Ventilation Design with Analysis
6.4.1 Getting to a Natural Ventilation Design That Works
6.4.2 Testing the Natural Ventilation Opening Size Requirements for Windows
6.5 Adding Shading and Improving Glazing and Thermal Mass
6.6 Energy Analysis
6.6.1 Energy Analysis—Know Your Task
6.6.2 Energy Analysis: Workflow
6.7 Daylight Analysis: How to Interpret the Pretty Pictures
6.7.1 Daylight Analysis: What Is the Goal of the Design Exercise?
6.7.2 Daylight Analysis: Annual Versus Instant Analysis
6.8 Glare Analysis
6.8.1 A Simple Methodology for Using Glare Calculations
6.8.2 Direct Sun
6.9 Sun Path Diagrams
6.9.1 How to Use Sun Path Diagrams as a Design Tool
6.9.2 Seasonal or Annual Average Direct Sun
6.10 Computational Fluid Dynamics (CFD)
6.10.1 How CFD Works
6.10.2 CFD Limitations
References
Chapter 7 Water: Efficient Use, Sustainable Waste Water Treatment, and Management
7.1 Design for Water-Efficient Buildings
7.1.1 Reducing Demand
7.1.2 Efficient Servicing Strategies
7.1.3 Other Considerations
7.1.4 Water Efficiency in Domestic Properties
7.2 Sustainable Drainage Design for Developments
7.2.1 Composition of Foul Drainage
7.2.2 Problems with Present Practice
7.2.3 Solutions
7.2.4 The Design of Ecological Treatment Systems
7.2.5 Types of Natural Treatment Systems
7.2.6 Natural Solid Waste Treatment
7.2.7 Surface Water Attenuation, Management, and Treatment
7.2.8 Key Principles of SuDS
7.2.9 The Need for Treatment of Surface Water
7.2.10 Construction
References
Chapter 8 Construction Phase Opportunities
8.1 Embracing Change
8.2 Legislative Drivers and Statutory Obligations
8.3 Procurement
8.4 Construction Documentation
8.5 Waste Management
8.5.1 Waste Management Versus Waste Reduction
8.5.2 The Waste Hierarchy
Building Information Modeling
Case Study: Recycling and Improvisation, London 2012 Olympic Stadium [17]
Case Study: Deconstruction of IOC Headquarters, Lausanne
8.5.3 Strategy Success
8.5.4 Circular Economy
Case Study: ArcelorMittal
8.6 Efficient On-Site Operations
8.6.1 Energy
8.6.2 Water
8.6.3 Site Logistics
8.7 Pollution Prevention
8.7.1 Water Pollution
8.7.2 Air Pollution
8.7.3 Other Pollution Sources
8.8 Other Considerations
8.8.1 Community Engagement
8.8.2 Biodiversity
8.8.3 Transportation
8.8.4 Cloud Collaboration
8.8.5 Achieving Buy-In
8.8.6 Training and Education
8.8.7 Commissioning and Testing
8.9 Green Building Certification Schemes
8.10 Collaboration Is Key
References
Chapter 9 Post-Construction
9.1 Post-Construction Evaluation: Closing the Gap Between Design Intent and Actual Performance
9.1.1 Introduction
9.1.2 The Need for Project Feedback
9.1.3 Post-Occupancy Evaluation
9.1.4 Making Feedback and POE Routine
9.1.5 What Range of Techniques Can Be Used?
9.1.6 What Should We Be Thinking About?
9.2 Design Quality Method
9.3 Optimize Operational and Maintenance Practices
9.4 Continuous Commissioning
9.4.1 Continuous Commissioning Stages
9.4.2 The CC Process
9.4.3 Detailed Investigation and Implementation Plan
9.4.4 Implementation
9.4.5 Summary
References
Chapter 10 Case Studies
10.1 The Bullitt Center, Seattle, Washington
10.1.1 Context
10.1.2 Aligned from the Start
10.1.3 Replicability of Processes
10.1.4 Challenging Traditional Concepts
10.1.5 Endnote
10.2 RMI Innovation Center, Basalt, Colorado
10.2.1 Context
10.2.2 Passive Design Strategies
10.2.3 Thermal Comfort Design Parameters
10.2.4 Endnote
10.3 The Brock Environmental Center, Chesapeake Bay, Virginia
10.3.1 Context
10.3.2 Iterative Design
10.3.3 Active Systems
A Different Approach for Life Cycle Cost Assessment [8]
10.3.4 Innovations
10.3.5 Post-Occupancy Evaluation (POE)
10.3.6 Endnote
10.4 Elmsbrook, Oxfordshire, U.K.
10.4.1 Context
10.4.2 One Planet Community
10.4.3 A True Zero-Carbon Community
10.4.4 Zero Waste
10.4.5 Sustainable Transport
10.4.6 Sustainable Water
10.4.7 Endnote
10.5 Park 20|20, Amsterdam, The Netherlands
10.5.1 Context
10.5.2 Applying Cradle to Cradle
10.5.3 Innovation
10.5.4 Endnote
10.6 Hotel Verde, Cape Town, South Africa
10.6.1 Context
10.6.2 Design Features
10.6.3 Construction
10.6.4 Operational Impacts
10.6.5 Endnote
10.7 The Sheikh Zayed Desert Learning Center, Abu Dhabi
10.7.1 Context
10.7.2 Sustainability Innovations
10.7.3 Water Usage and Minimization
10.7.4 Building Management System
10.7.5 Endnote
10.8 Khoo Teck Puat Hospital, Singapore
10.8.1 Context
10.8.2 IDP at KTPH
10.8.3 Healing Environment
10.8.4 Endnote
10.9 Council House 2, Melbourne, Australia
10.9.1 Context
10.9.2 Design Development
10.9.3 Post-Occupancy Studies
10.9.4 Lessons Learned
10.9.5 Endnote
References
About the Authors
Contributing Authors
Case Study Contributors
Index




پست ها تصادفی