توضیحاتی در مورد کتاب Wireless Networking Based Control
نام کتاب : Wireless Networking Based Control
عنوان ترجمه شده به فارسی : کنترل مبتنی بر شبکه های بی سیم
سری :
نویسندگان : Mazumder, Sudip K(Editor)
ناشر : Springer Science+Business Media, LLC
سال نشر : 2010;2011
تعداد صفحات : 351
ISBN (شابک) : 9781441973924 , 1441973931
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 5 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
12.2 Problem Formulation......Page 2
13.3.1 Electromagnetic Propagation in Water......Page 4
13.3.2 Radios for Underwater Coordinated Control......Page 6
10.4.1 Initial Preparation and Fundamental Definitions......Page 8
Cover......Page 1
Preface......Page 5
Contributors......Page 9
13.4.2 Controlling the Average Velocity of Each Vehicle......Page 10
1.1 Introduction......Page 11
13.4.3 Regulating Spatial Errors While Circling......Page 12
13.5 Demonstration......Page 13
1.1.1 Related Work......Page 14
1.2.1 NCSs Modeled By Impulsive Systems......Page 15
12.9 Concluding Remarks......Page 18
1.2.3 Example......Page 19
1.3 Delay Impulsive Systems: A Model for NCSs with Variable Sampling and Delay, MIMO Case......Page 20
1.3.1 NCSs Modeled By MIMO System (1.11)......Page 21
1.3.1.1 One-Channel NCS with Dynamic Feedback Controller......Page 22
1.3.1.2 Two-Channel NCS with Nonanticipative Controller......Page 23
1.3.2 Exponential Stability of MIMO NCSs......Page 25
10.5.4 Simulation with Time Variation......Page 26
Wireless Networking Based Control......Page 3
Contents......Page 7
11.6 IEEE 802.15.4 Optimization......Page 17
1.3.1.3 Two-Channel NCS with Anticipative Controller......Page 24
9.5.3.2 Reliability Constraint......Page 27
1.3.3 Example......Page 28
1.4 Wireless NCS QoS......Page 29
1.4.1 Types Of Real-Time Scheduling......Page 30
1.2.2 Exponential Stability Of SISO NCSs......Page 16
1.5 Implementation Considerations......Page 32
References......Page 34
1.4.2 Scheduling Test To Guarantee QoS......Page 31
1.5.1 Example......Page 33
1.6 Conclusions and Future Work......Page 35
References......Page 36
2.1 Introduction......Page 38
2.2 Problem Setup......Page 40
2.3 Sensor Without Computation Capability......Page 42
2.3.1 Modified Kalman Filtering......Page 43
2.3.2 Optimal Estimation with Delayed Measurements......Page 44
2.3.3 Lower and Upper Bounds of Pr[Pk M ]......Page 46
2.3.4 Computing the Minimum D......Page 50
2.3.4.1 Sufficient Minimum D......Page 51
2.4 Sensor with Computation Capability......Page 52
2.4.1 When C Is Not Full Rank......Page 54
2.5.1.1 Sensor Without Computation Capability......Page 56
2.5.1.2 Sensor with Computation Capability......Page 57
2.5.2 Vector System......Page 58
2.A Supporting Lemmas......Page 59
2.B Evaluate E[Pk ] and Its Stability......Page 61
References......Page 63
3.1 Introduction......Page 65
3.2.1 Network Model......Page 68
3.2.3 End-to-End Delay Model......Page 70
3.2.4 Resource Optimization Problem......Page 72
3.3 Solution Approach and Distributed Algorithm......Page 73
3.3.1 Robustness Subproblem......Page 75
3.3.2 Power Control Subproblem......Page 77
3.3.3 Rate Allocation Subproblem......Page 79
3.3.4 Link Delay Subproblem......Page 81
3.4 Iterative Cross-Layer Algorithm......Page 82
3.5.1 Throughput-Robustness Tradeoff......Page 84
3.5.2 Performance Evaluation of ICLA......Page 87
3.6 Summary and Conclusions......Page 88
References......Page 91
4.1 Introduction......Page 93
4.2 Related Work......Page 96
4.3 System Architecture......Page 97
4.4 QoS Challenges......Page 99
4.4.1 Resource Constraints......Page 100
4.4.4 Mixed Traffic......Page 101
4.6.1 A Simple Solution......Page 104
4.6.2 Prediction Algorithms......Page 105
4.7.1 Setup Overview......Page 106
4.7.2 Results and Analysis......Page 107
References......Page 109
5.1 Introduction......Page 111
5.2 System Model......Page 113
5.2.1.1 Received Signal-to-Noise Ratio......Page 114
5.2.1.2 Probabilistic Characterization of SNR......Page 115
5.2.1.4 Stochastic Communication Noise Variance......Page 116
5.2.1.5 Packet Drop Probability......Page 117
5.2.3 Impact of Packet Drop and Stochastic Communication Error on Kalman Filtering......Page 118
5.3.1 Noise-Free Case......Page 120
5.3.2 Estimator has No Knowledge on the Reception Quality......Page 121
5.3.3 Estimator has Full Knowledge on the Reception Quality......Page 122
5.3.4 Estimator has Partial Knowledge on the Reception Quality......Page 124
5.4 Optimization of Packet Drop in the Physical Layer......Page 127
5.4.1 Estimator has No Knowledge on the Reception Quality......Page 128
5.4.1.1 Adaptive Thresholding......Page 130
5.4.1.2 Non-Adaptive Thresholding Through Minimization of E(P[])......Page 133
5.4.2 Estimator has Full Knowledge on the Reception Quality......Page 138
5.5 Conclusions and Further Extensions......Page 139
References......Page 140
6.1 Introduction......Page 143
6.2 Problem Description......Page 145
6.3 Wireless Multi-Hop Networks......Page 146
6.4 Time-Delay Estimator......Page 148
6.5.1 Ideal Delay Compensation......Page 150
6.5.2 Use of the Delay Estimator......Page 152
6.6.1 Communication Protocol......Page 154
6.6.2 Network Setup and Experimental Measurements......Page 155
6.6.3 Physical System and Control Setup......Page 156
6.6.4 Simulation Results......Page 157
6.7 Conclusions......Page 159
7.1 Introduction......Page 161
7.2 Localization Technologies and Approaches......Page 162
7.3 Signal Strength Localization......Page 164
7.4 Related Work and Background......Page 166
7.5.1 Multilateration and the Signal Strength Propagation Model......Page 168
7.5.2 Fingerprinting Approaches......Page 171
7.5.3 Location System Setup and Configuration Challenges......Page 172
7.5.4 Blind Node Centric vs. Anchor Node Centric Architecture......Page 173
7.5.5 Anchor Separation and Sources of Location Error......Page 174
7.6.1 Industrial Refinery Wi-Fi Network......Page 175
7.6.2 WiFi Building Radio Network......Page 177
7.6.3 Building 900MHz 802.15.4 Radio Network......Page 179
References......Page 181
8.1 Introduction......Page 183
8.2.1 Notation......Page 185
8.2.2 Continuous and Discrete Time Consensus Algorithms......Page 187
8.2.3 Proximity Graphs......Page 190
8.3 Counting......Page 191
8.3.1 The Aggregation Algorithm......Page 193
8.3.2 Distributed Counting of Agents......Page 194
8.3.3 Adding and Removing Agents from the Formation......Page 195
8.3.3.1 Adding Agents to the Formation......Page 196
8.4 Rendezvous......Page 197
8.4.2 Consensus-Based Rendezvous......Page 198
8.4.3 Robustness of the Algorithm......Page 201
8.4.4 Geometric Rendezvous......Page 202
8.4.5 Simulations......Page 206
References......Page 207
Chapter 9:Design Principles of Wireless Sensor Networks Protocols for Control Applications......Page 210
9.1 Introduction......Page 211
9.2 Background......Page 213
9.3 Protocol Design for Control Applications......Page 215
9.4 Breath......Page 217
9.4.1 The Breath Protocol Stack......Page 218
9.4.2 State Machine Description......Page 219
9.4.3 Protocol Optimization......Page 221
9.4.3.1 Reliability Constraint......Page 222
9.4.3.2 Delay Constraint......Page 223
9.4.3.3 Energy Consumption......Page 224
9.4.5.2 Wake-Up Rate and Radio Power Adaptation......Page 226
9.4.6 Experimental Implementation......Page 227
9.4.7.1 Reliability......Page 228
9.4.7.2 Delay......Page 230
9.5.1 System Model......Page 232
9.5.2 TREnD Protocol Stack......Page 233
9.5.3.1 Energy Consumption......Page 235
9.5.3.2 Reliability Constraint......Page 236
9.5.3.4 Protocol Optimization......Page 237
9.5.5 Experimental Implementation and Validation......Page 238
9.5.5.1 Performance Comparison......Page 239
9.5.5.2 Dynamic Adaptation......Page 241
9.6 Conclusions......Page 243
10.1 Introduction......Page 246
10.2.1 Moving Algorithms for Mobile Wireless Sensor Network......Page 248
10.2.3 Topology Control......Page 249
10.3.1 Problem Description......Page 250
10.3.3 Performance Index......Page 251
10.4 Redeployment Algorithm......Page 252
10.4.1 Initial Preparation and Fundamental Definitions......Page 253
10.4.2 Artificial Force for Inner Nodes......Page 255
10.4.3 Artificial Force for Leaf Nodes......Page 257
10.4.4 Artificial Force Toward Events......Page 258
10.4.5 Relationships Between the Artificial Forces......Page 259
10.4.6 Stopping Criteria......Page 260
10.5.1 Artificial Force for Inner Nodes......Page 262
10.5.3 Fundamental Simulation with N=50......Page 265
10.5.3.1 Mode 1......Page 266
10.5.3.3 Mode 3......Page 269
10.5.4 Simulation with Time Variation......Page 271
References......Page 275
11.1 Introduction......Page 277
11.2 Overview of the IEEE 802.15.4......Page 278
11.2.1 CSMA/CA Mechanism of CAP......Page 279
11.2.2 GTS Allocation of CFP......Page 280
11.3.1.1 Analytical model of CAP......Page 281
11.3.1.2 Analytical Model of CFP......Page 282
11.3.2 Adaptive Tuning of MAC......Page 283
11.5.1 Markov Chain Model......Page 285
11.5.2 Reliability......Page 289
11.5.3 Delay......Page 290
11.5.4 Power Consumption......Page 292
11.6 IEEE 802.15.4 Optimization......Page 293
11.7.1 Protocol Behavior in Stationary Conditions......Page 295
11.7.2 Protocol Behavior in Transient Conditions......Page 298
11.7.3 Robustness and Sensitivity Analysis......Page 299
References......Page 304
12.1 Introduction......Page 307
12.2 Problem Formulation......Page 308
12.2.1 Time Delays......Page 309
12.2.3 Standardisation......Page 310
12.3 Network Induced Delays......Page 311
12.4 Stability Analysis......Page 313
12.5 Packet-Based Control......Page 315
12.6 Example 1: Packet-Based Dynamic Matrix Control......Page 316
12.6.1 Application......Page 317
12.7.1 QoS Based Sampling......Page 319
12.7.2 Event-Based or Quality of Performance Based Sampling......Page 320
12.8 Example 2: State Differential Sampling with QoS......Page 321
12.9 Concluding Remarks......Page 324
References......Page 326
13.1 Introduction......Page 329
13.2 Problem Formulation......Page 331
13.3.1 Electromagnetic Propagation in Water......Page 332
13.3.2 Radios for Underwater Coordinated Control......Page 334
13.3.3 Medium Access to Support Coordinated Control......Page 335
13.4.1 Controlling the Velocity of the Group......Page 337
13.4.2 Controlling the Average Velocity of Each Vehicle......Page 338
13.4.3 Regulating Spatial Errors While Circling......Page 340
13.5 Demonstration......Page 341
13.5.1 Packet Loss and Controller Modification......Page 342
13.5.3 Target Tracking Simulation......Page 343
References......Page 344
Index......Page 346