توضیحاتی در مورد کتاب :
مقالات داوری نوزدهمین کنفرانس بینالمللی کسر خودکار، CADE 2003، در میامی بیچ، فلوریدا، ایالات متحده آمریکا در ژوئیه 2003 برگزار شد. به دقت بررسی و از بین 83 مورد ارسالی انتخاب شد. تمام جنبه های فعلی استنتاج خودکار مورد بحث قرار می گیرد، از مسائل نظری و روش شناختی تا ارائه اثبات کننده ها و سیستم های جدید قضیه.
فهرست مطالب :
Cover
......Page 1
Automated Deduction –CADE-19: 19th International Conference on Automated Deduction, Miami Beach, FL, USA, July 28 – August 2, 2003, Proceedings
......Page 4
ISBN 3540405593......Page 5
Preface......Page 6
Program Committee......Page 8
Additional Reviewers......Page 9
Table of Contents......Page 10
SAT-Based Counterexample Guided Abstraction Refinement in Model Checking......Page 14
1 Introduction......Page 15
2 Prerequisites on Kripke Structures and LTL......Page 16
3 Simulations......Page 17
4 Rewriting Logic Specifications and Model Checking......Page 18
5 Equational Abstractions......Page 22
6 Related Work and Conclusions......Page 27
References......Page 28
1 Introduction......Page 30
2 Background......Page 32
3 Compatibility among Function Definitions......Page 34
4 Safe Generalizations by the No-Theory Condition......Page 39
5 A Decidable Class of Equational Conjectures......Page 41
6 Conclusion and Further Work......Page 43
References......Page 44
1 Introduction......Page 45
2 Dependency Pairs......Page 46
4 Cycle Analysis......Page 49
5 Argument Filterings......Page 52
6 Experiments......Page 56
References......Page 59
1 Introduction......Page 60
2 Preliminaries. Standard Knuth-Bendix Order......Page 61
3 The Ground Case......Page 64
4 Non-ground Order......Page 69
References......Page 71
1 Motivation......Page 73
2 Preliminaries......Page 75
3 Unary Coding of Numbers......Page 76
4 Binary Coding of Numbers......Page 80
5 ABox Consistency......Page 84
6 Outlook......Page 86
References......Page 87
1 Introduction......Page 103
2 Description Logics and Tableau Algorithms......Page 104
3 Alternating Automata......Page 106
4 Translating Alternating Automata into ELUf......Page 109
5 Two-Way Alternating Automata......Page 113
6 Implementation......Page 115
References......Page 116
1 Introduction......Page 119
2 The Safety Policy......Page 122
3 A Safety Proof......Page 128
4 Conclusion......Page 131
References......Page 132
1 Introduction......Page 134
2 Isabelle/HOL Notation......Page 135
3 A Simple Programming Language......Page 136
5 Lists on the Heap......Page 137
6 Inductive Data Types on the Heap......Page 140
7 The Schorr-Waite Algorithm......Page 141
References......Page 148
1 Introduction......Page 149
2 a......Page 152
3 ß......Page 156
4 Applications......Page 160
References......Page 162
1 Introduction......Page 164
2 Definition of PFsub......Page 165
3 Basic Proof Theory of PFsub......Page 171
4 Subtyping in PFsub......Page 172
5 Reduction to PF......Page 174
7 Conclusion......Page 176
References......Page 177
Reasoning about Quantiffiers by Matching in the E-graph......Page 179
1 Introduction......Page 180
3 The Algorithm for the Arithmetic Fragment......Page 182
4 Extension to Uninterpreted Function Symbols......Page 187
5 Retracting Assumptions......Page 189
6 Experimental Results......Page 191
7 Related Work......Page 192
References......Page 194
1 Introduction......Page 195
2 Preliminaries......Page 196
3 Basic Components......Page 197
4 Superposition......Page 205
References......Page 208
1 Introduction......Page 210
2 Preliminaries......Page 211
3 Combining Canonizers......Page 214
4 Convexity and Canonization......Page 218
5 Non-existence of Solvers......Page 221
6 Conclusion and Related Work......Page 222
References......Page 223
1 Introduction......Page 225
2 Definitions and Notations......Page 227
3 A Class of Equational Theories – TFE(S, R)......Page 228
4 Equational Proofs in TFE(S, R)......Page 229
5 Matching Problem in TFE(S, R)......Page 230
6 Unification Problem in TFE(S, R)......Page 232
7 Combination of Theories in TFE(S, R)......Page 234
8 Related Work......Page 237
9 Conclusion......Page 238
References......Page 239
1 Introduction......Page 241
3 Conditional Equations......Page 243
4 Vertical Sections, Lambda Calculus and Reification......Page 244
5 The Constructors iterate[x,y] and power[x]......Page 245
7 Arithmetic of Natural Numbers......Page 248
8 Laws of Exponents......Page 251
10 Schröder-Bernstein Theorem......Page 252
References......Page 253
1 Introduction......Page 256
2 Ordinals......Page 258
3 Definitions and Complexity......Page 261
4 Proofs of Correctness......Page 265
References......Page 269
1 Introduction......Page 272
2 Eight Queries Regarding Permutation Groups......Page 274
3 Formalisation Issues......Page 279
4 Proof Planning and Computer Algebra......Page 280
5 Planning the Subproblems......Page 282
6 Evaluation......Page 284
References......Page 286
1 Introduction......Page 288
2 Details of Implementation......Page 289
3 Current Advances......Page 291
References......Page 292
1 Introduction......Page 293
3 An Overview of IsaPlanner......Page 294
4 A Simple Induction Technique Encoded in IsaPlanner......Page 295
5 Some Results from Using the Induction Technique......Page 296
References......Page 297
1 Introduction......Page 303
2 User Interaction......Page 304
3 Improving the Quality of Conjectures......Page 305
5 Conclusions and Further Work......Page 306
Appendix A......Page 307
2 The Design of CASC-19......Page 309
3 Discussion......Page 310
1 Introduction......Page 311
2 Making Coq and ELAN Cooperating......Page 313
3 Construction of Proof Terms......Page 314
4 Proof Search and Proof Check for Equational Proofs......Page 316
5 Deduction Modulo and the Noetherian Induction Principle......Page 319
6 Proof Search and Proof Check for Inductive Proofs......Page 326
7 Conclusion......Page 327
References......Page 328
2 The WALDMEISTER Loop......Page 331
3 WALDMEISTER in Parallel......Page 333
References......Page 335
2 A Sketch of the Base Logic......Page 336
3 Working with VeriFun......Page 338
References......Page 340
1 Why Another Inductive Theorem Prover?......Page 342
2 QuodLibet Specifications......Page 343
3 Proving Theorems with QuodLibet......Page 344
References......Page 346
Reasoning about Qualitative Representations of Space and Time......Page 348
1 Introduction......Page 349
2 A Motivating Example......Page 350
3 Language......Page 351
5 The Inference System......Page 353
6 Refutational Completeness......Page 356
8 Experiments......Page 361
References......Page 363
Translation of Resolution Proofs into Short First-Order Proofs without Choice Axioms......Page 379
1 Replacement of Function Symbols......Page 380
2 Translation of Resolution on the Clause Level......Page 383
3 Translation of the CNF-Transformation......Page 386
References......Page 392
1 Introduction......Page 426
2 The Idea of the Principle......Page 427
3 Translation to Clause Logic......Page 430
4 Incorporating Axioms into the Translation......Page 432
5 Completeness......Page 434
7 Other Consequences and Related Work......Page 437
8 Conclusions......Page 439
References......Page 440
1 Introduction......Page 441
2 Schematic Saturation......Page 443
3 Horn Clauses and Answer Substitutions......Page 449
4 Another Approach to Unification......Page 451
5 Conclusion......Page 454
References......Page 455
1 Introduction......Page 456
2 ACU I with Commuting Homomorphisms......Page 457
3 ACU IDl-Unification Is Decidable......Page 463
4 The ACU ID-Unification Problem......Page 467
References......Page 470
1 Introduction......Page 472
2 Motivating Example......Page 473
3 Notation and Basic Definitions......Page 475
4 Source-Tracking......Page 477
5 Unification Path Expressions......Page 478
6 Unification Algorithm with Source-Tracking......Page 479
7 Simplification of Unification Path Expressions......Page 481
8 Related Research......Page 483
9 Conclusions and Future Work......Page 484
References......Page 485
1 Introduction......Page 487
2 A Modal Foundation for Typed Existential Variables......Page 488
3 Toward Efficient Higher-Order Pattern Unification......Page 494
4 Experiments......Page 497
5 Related Work......Page 499
References......Page 500
1 Introduction......Page 502
2 Simply Typed Lambda Calculus......Page 504
3 Behavioral and Contextual Equivalences......Page 507
4 The Context Lemma......Page 508
5 A Computable Upper Bound for the Number of Equivalence Classes......Page 510
6 An Algorithm for Arity-Bounded and fv-Bounded HOMPs......Page 511
7 Remarks on the Complexity......Page 514
References......Page 515
Author Index......Page 517
توضیحاتی در مورد کتاب به زبان اصلی :
The refereed proceedings of the 19th International Conference on Automated Deduction, CADE 2003, held in Miami Beach, FL, USA in July 2003. The 29 revised full papers and 7 system description papers presented together with an invited paper and 3 abstracts of invited talks were carefully reviewed and selected from 83 submissions. All current aspects of automated deduction are discussed, ranging from theoretical and methodological issues to the presentation of new theorem provers and systems.