Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance

دانلود کتاب Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance

41000 تومان موجود

کتاب کامپوزیت های تقویت شده با الیاف سلولزی: مهندسی رابط، پردازش و عملکرد نسخه زبان اصلی

دانلود کتاب کامپوزیت های تقویت شده با الیاف سلولزی: مهندسی رابط، پردازش و عملکرد بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 3


توضیحاتی در مورد کتاب Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance

نام کتاب : Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance
عنوان ترجمه شده به فارسی : کامپوزیت های تقویت شده با الیاف سلولزی: مهندسی رابط، پردازش و عملکرد
سری : Woodhead Publishing Series in Composites Science and Engineering
نویسندگان : , , ,
ناشر : Woodhead Publishing
سال نشر : 2022
تعداد صفحات : 419 [420]
ISBN (شابک) : 0323901255 , 9780323901253
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 Mb



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Cover Cellulose Fibre Reinforced Composites Contributors Copyright Preface Acknowledgments Cellulose fiber-reinforced composites-History of evolution, chemistry, and structure Introduction Cellulose fiber-reinforced composites-History of evolution Chemistry Glucose monomer Glucose biopolymerization Cellulose structure Chemical and solubility properties of cellulose Sources of cellulose Separation of cellulose Purification of cellulose Cellulose polymorphism Chemical modification of cellulose Preparation of nanocellulose Structures Cellulose reinforcement in polylactic acid and polybutylene succinate Melt flow index of the composite SEM analysis of composite foams FTIR spectroscopy XRD analysis Mechanical properties Cellulose reinforcement in natural bamboo-composite FTIR analysis SEM analysis Mechanical properties Cellulose fibers reinforcement in ethylene-nonbornene copolymer composite FTIR analysis Mechanical properties Optical characterization Acknowledgment References Bamboo cellulose: Structure, properties, and applications Introduction Bamboo cellulose extraction process Bamboo cellulose production by wet spinning Kraft pulping Bamboo nanocellulose by mechanochemical process Bamboo cellulose extraction by acid hydrolysis (99% sulfuric acid) Hydrothermal extraction Standard alkali extraction Ambient condition extraction Two-stage extraction Bamboo cellulose using HNO3/KClO3 method Bamboo-derived cellulose nanofiber (CNF) by ultrasonication Anatomy of bamboo Physical structure of bamboo Chemical structure of bamboo fiber Properties of bamboo cellulose Durability Elasticity Antimicrobial resistance Biodegradability Breathable and cool Hardness Impact resistance Absorption characteristics Thermal property Air permeability Water vapor permeability Tenacity UV protectivity Applications of bamboo cellulose Composite reinforcement Textile application Cellulosic nanofiber preparation Medical applications Food and food packaging Furniture and interior Sports industry Construction Bioenergy production Paper industry Conclusion References Electrospun cellulose nanofiber composites Introduction Electrospinning technique and its applicability Cellulose, its properties, and applications Cellulosic composites Electrospun cellulosic composite nanofibers Applications of electrospun cellulosic composite nanofibers Conclusion References Chemical modification of cellulose fiber surface Introduction Cellulose fibers Classification of natural fibers Fiber surface modification Physical treatments Chemical treatments Alkaline treatment Silane treatment Acetylation treatment Benzoylation treatment Summary References Physical modification of cellulose fiber surfaces Introduction and present scenario Cellulose fibers: Source, structure and constituents Physical modification of cellulose fibers Plasma treatment Corona treatment Dielectric barrier treatment Atmospheric pressure glow discharge Atmospheric pressure plasma jet Ultrasound and ultraviolet treatments Ozone treatment Effect of physical modification toward performance and functionality of thermal fiber composites Conclusions References Interface engineering-matrix modification in cellulose fiber composites Introduction Effect of chemical treatment on cellulose fiber-reinforced composites Conclusion References Characterization of fiber surface treatment by Fourier transform infrared (FTIR) and Raman spectroscopy Introduction Significance of the FTIR and RS in fiber characterization FTIR spectroscopy (FTIR) Raman spectroscopy Comparing FTIR and Raman spectra Analysis of fiber surface modification Conclusions References Evaluation of the effect of processing and surface treatment on the interfacial adhesion in cell Introduction Effect of surface treatment on the mechanical properties of cellulose fiber-reinforced composites Conclusion References Manufacturing aspects of cellulose fiber-reinforced composites Introduction Effect of processing variables on the quality of thermoset-based cellulosic fiber-reinforced composites Composite manufacturing with thermoplastic matrices Twin screw extrusion and injection molding Advanced 3D-printing manufacturing techniques Conclusions References Further reading Compression and injection molding techniques Introduction Compression molding technique CMT for thermosetting polymer composites CMT for thermoplastic polymer composites Injection molding technique IMT for thermosetting polymer composites IMT for thermoplastic polymer composites CMT vs IMT Mechanical properties Wood fiber-reinforced polypropylene composites Sugarcane bagasse fiber-reinforced polypropylene composites Jute fiber-reinforced poly lactic acid composites Sisal fiber-reinforced poly lactic acid composites Kenaf fiber (KF)-reinforced poly lactic acid composites Agave fiber-reinforced poly lactic acid composites Conclusions References Thermomechanical characterization of cellulose fiber composites Introduction Classification of cellulosic fibers Chemical composition of cellulose fibers Cellulose Hemicellulose Lignin Based on properties of fiber Microfibril angle Crystallinity Fiber density Properties Morphology Mechanical properties Chemical property Thermal property Tribological behavior Modification of fiber Physical modification Steam explosion method Heat treatment Chemical modifications Alkali treatment Silane coupling agent Applications of cellulose fiber composites Merits and demerits of cellulose fibers over synthetic fibers Merits Demerits Conclusion References Evaluation of moisture uptake behavior in cellulose fiber Introduction Moisture uptake by cellulose fibers in cellulose-based composites Moisture uptake mechanism and its effects Influence of moisture uptake on cellulose fiber properties Restoration processes for moisture uptake behavior of cellulose fibers Conclusion References Effect of zinc oxide filler on compressive and impact properties of jute fiber fabric-reinforced epoxy composites Introduction Materials Preparation of composites Compressive properties Impact properties Results and discussion Compressive properties Impact properties Conclusions References Predication of impact strength reduction and service life of 45-degree laminate jute fiber fabric in epoxy c Introduction Materials Jute fiber mat Preparation of composites Artificial aging of composites Impact properties Results and discussion Weight variation Impact properties Diffusion coefficient and activation energy Arrhenius plots for service life prediction of the JEC Conclusion References Extraction and characterization of cellulosic fibers from the stem of papaya tree (Carica papaya L.) Introduction A worldwide clamor for vegetable fiber Natural and vegetable fibers Experimental Extraction of papaya stem fiber and fiber extraction yield Characterization of papaya stem fiber Results and discussions Conclusions Acknowledgments References Cellulose-based composite materials for dye wastewater treatment Introduction Application of dyes and its impact Cellulose Cellulose-based composites for dye removal Cellulose-ZnO-based composite for dye removal Cellulose-activated carbon-based composite Cellulose-graphene oxide-based composite Cellulose-chitosan-based composite Conclusion References Cellulose fiber-reinforced polymer composites as packaging materials Introduction Packaging Categories of packaging Packaging polymer properties Barrier properties Oxygen transmission rate (OTR) Water vapor transmission (WVTR) Mechanical properties Thermal properties Packaging materials Bio-based packaging materials Bioplastic packaging applications Classification of bio-based food packaging materials Cellulosic fiber Cellulosic fiber composition Cellulosic fiber properties Cellulosic fiber production Cellulosic fiber treatment Physical treatment Chemical treatment Cellulosic fiber-based polymeric composites Cellulosic fiber-based biocomposites in packaging Cellulosic fiber-based biopolymeric composites properties Structural properties Mechanical properties Aging properties Advantages and disadvantages of cellulosic fibers in packaging Cellulosic fiber-based biodegradable polymer composite film in packaging Conclusion References Bionanocomposites reinforced with cellulose fibers and agro-industrial wastes Introduction Mechanical properties Natural rubber-based composites Polyvinyl alcohol (PVA) matrix-based composites Epoxy resin matrix-based composites High-density polyethylene (HDPE)-based composites Poly butylene succinate (PBS)-based composites Starch-based composites Polyethylene oxide (PEO)-based composites Polyacrylamide (PAM)-based composites Polystyrene (PS)-based composites Poly(lactic acid)-based composites Thermal properties Natural rubber-based composites Epoxy-based composites Polyvinyl alcohol-based composites Poly ethylene-co-vinyl acetate (EVA)-based composites Poly(3-hydroxybutyrate) (PHB)-based composites Polypropylene-based composites Polyurethane-based composites Xylan-based composites Poly(ethylene glycol)-based composites Starch-based composites Fabrication processes Using tea waste Preparation of tea waste Fabrication of silica nanoparticles Synthesis of bionanocomposite Using waste jackfruit peels Preparation of plant material Pectin isolation from jackfruit peel Partial isolation of pectin from the cell wall material Synthesis of bionanocomposites Using waste turmeric spent Isolation of dietary fiber (DF) from turmeric residue Turmeric nanofiber preparation Synthesis of bionanocomposites Using spent hens Microwave-assisted lipid extraction Synthesis of monomer and polymer In situ dispersion of nanoclay and synthesis of nanocomposite Synthesis of bionanocomposite Using waste sunflower stalk Extraction of cellulose nanocrystals Extraction of cellulose nanofibrils Synthesis of bionanocomposites Physical properties and tribology of different bionanocomposite reinforced by agro-industrial wastes Sugar palm fiber Sisal Coir Ramie fiber Hemp Flax Kenaf (bast) Sugarcane bagasse Wheat straw fiber Soy hull fiber Banana fiber Coconut sheath Acknowledgment References Effects of machining on the acoustic and mechanical properties of jute and luffa biocomposites Introduction Materials and methods Results and discussion Conclusion Acknowledgments References Jute and luffa fibers: Physical, acoustical, and mechanical properties Introduction Background information Materials and methods Physical, acoustical, and mechanical properties Internal structures of jute and luffa fiber samples Diameter and length Density Youngs modulus Sound absorption coefficient Transmission loss Discussion and concluding remarks Acknowledgments References Prediction of the sound absorption performance of porous samples including cellulose fiber-based structures Introduction Calculation of sound absorption coefficients Mathematical models for the prediction of acoustic properties Simple empirical models: Delany-Bazley model and its modified versions Rigid-frame models Johnson-Champoux-Allard model Johnson-Champoux-Allard-Lafarge model Deformable-frame model: Biot-Allard model Estimation of the parameters needed in the mathematical models Parameters for the air outside the sample Parameters for the porous sample Analyses and results First test case Second test case Third test case Discussion Summary of the parameters used in the mathematical models Regression constants used in the empirical models Evaluation of viscous, thermal, and inertial effects Evaluation of the elastic and damping properties of the frame of porous sample Estimation of the frame resonance frequency Conclusion References Index




پست ها تصادفی