توضیحاتی در مورد کتاب Modeling Mindsets: The Many Cultures Of Learning From Data
نام کتاب : Modeling Mindsets: The Many Cultures Of Learning From Data
عنوان ترجمه شده به فارسی : ذهنیت های مدل سازی: بسیاری از فرهنگ های یادگیری از داده ها
سری :
نویسندگان : Christoph Molnar
ناشر : Independently published
سال نشر : 2022
تعداد صفحات : 113
ISBN (شابک) : 9798358729339
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 3 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Preface
Who This Book is For
Introduction
Models Have Variables And Learnable Functions
Models Are Embedded In Mindsets
A Mindset Is A Perspective Of The World
Mindsets Are Cultural
Mindsets Are Archetypes
Mindsets Covered In This Book
Statistical Modeling – Reason Under Uncertainty
Every ``Thing\'\' Has A Distribution
Models Encode The Data-Generating Process
Good Models Satisfy Assumptions And Fit Data
Models Enable Conclusions
Strengths & Limitations
Frequentism – Infer ``True\'\' Parameters
Probability Is A Long-Run Frequency
Imagined Experiments Underpin Inference
Decide With Tests And Intervals
Strengths & Limitations
Bayesianism – Update Parameter Distributions
Bayes Demands A Prior
The Likelihood Unites All Statistical Mindsets
The Posterior Is The Modeling Target
Use The Posterior To Learn About The World
Strengths & Limitations
Likelihoodism – Likelihood As Evidence
Statistical Mindsets Use Likelihood Differently
Get Rid Of Priors And Imagined Experiments
Compare Hypotheses Using Likelihoods
Strengths & Limitations
Causal Inference – Identify And Estimate Causes
Causality Is Often Ignored
Visualize Causality With DAGs
Pick A Flavor Of Causality
A Causal Model Comes Before Estimation
Strengths & Limitations
Machine Learning – Learn Algorithms From Data
Put The Computer First
Focus On Task Performance
Machine Learning As Statistical Learning
Strengths & Limitations
Supervised Learning – Predict New Data
Learning Is Optimization And Search
Good Models Predict New Data Well
Supervision Enables Automation And Competition
Mimic Outputs, Not The Process
Strengths & Limitations
Unsupervised Learning – Find Hidden Patterns
Find Patterns In The Data Distribution
Unsupervised Learning Has Many Tasks
Strengths & Limitations
Reinforcement Learning – Learn To Interact
The Model Acts In A Dynamic World
Learn In Different Ways
Combine Reinforcement With Deep Learning
Strengths & Limitations
Deep Learning - Learn End-To-End Networks
Mindset Emerges From Neural Networks
Modularity Allows End-To-End Modeling
Properties Emerge From Neural Networks
Strengths & Limitations
The T-Shaped Modeler
Pragmatic Modeling Requires Many Mindsets
Don\'t Try To Be An Expert On All Mindsets
Become A T-Shaped Modeler
Acknowledgments
References