Molecular Theory of Electric Double Layers

دانلود کتاب Molecular Theory of Electric Double Layers

39000 تومان موجود

کتاب نظریه مولکولی لایه های دوگانه الکتریکی نسخه زبان اصلی

دانلود کتاب نظریه مولکولی لایه های دوگانه الکتریکی بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 2


توضیحاتی در مورد کتاب Molecular Theory of Electric Double Layers

نام کتاب : Molecular Theory of Electric Double Layers
عنوان ترجمه شده به فارسی : نظریه مولکولی لایه های دوگانه الکتریکی
سری :
نویسندگان : , ,
ناشر : IOP Publishing
سال نشر : 2021
تعداد صفحات : 323
ISBN (شابک) : 0750322748 , 9780750322744
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 35 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface
Author biographies
Dimiter N Petsev
Frank van Swol
Laura J D Frink
Chapter 1 Introduction: a historical overview
1.1 Charges and fields
1.2 Electrostatics of systems with distributed charges
1.3 The concept of electric double layer
References
Chapter 2 The origin of charge at interfaces involving electrolyte solutions
2.1 Effects of the surface chemical reactions and the charge regulation model
2.2 Effects due to physical adsorption
2.3 Structural effects on the ionic and solvent concentration at the interface
References
Chapter 3 Continuum models of the electric double layers
3.1 The Poisson–Boltzmann equation
3.2 Electric double layer models based on the Poisson–Boltzmann equation: exact and approximate solutions
3.2.1 Single flat electric double layer: the Gouy–Chapman model
3.2.2 Interaction between two flat electric double layers
3.2.3 Curved electric double layers
3.2.4 Effects due to surface charge regulation
3.2.5 Electric double layer and colloid stability
3.2.6 Variational approach in the Poisson–Boltzmann limit
3.3 Beyond the Boltzmann distribution: the semiconductor–electrolyte interface
3.4 Electrokinetic phenomena
3.4.1 Electrokinetic phenomena in the absence of electric double layer polarization
3.4.2 Electrokinetic phenomena in the presence of electric double layer polarization
3.5 Deficiencies of the continuum approach
References
Chapter 4 Integral equation theory
4.1 Background
4.2 Percus–Yevick closure
4.3 The hypernetted-chain closure
4.4 The mean spherical approximation (MSA)
4.4.1 Electrolytes
4.5 Hard sphere mixtures
4.6 The Ornstein–Zernike equations approach to studying electric double layers
References
Chapter 5 Perturbation and mean field theory
5.1 Background
5.2 Virial expansions
5.3 Zwanzig’s perturbation theory
5.3.1 Barker and Henderson perturbation theory [12]
5.3.2 Weeks, Chandler and Andersen theory
5.4 Mean field theory
5.4.1 The Weiss approximation [21]
5.4.2 The lattice gas model
5.4.3 Scaled particle theory (SPT)
5.4.4 Fluid Mixtures
5.4.5 One-dimensional hard sphere fluid
References
Chapter 6 Density functional theory
6.1 Density functional theory for electronic structure
6.1.1 History
6.1.2 Density functional theory formal proofs
6.1.3 Quantum-DFT implementations
6.1.4 Molecular models from Quantum-DFT
6.1.5 DFT for finite temperature
6.2 Density functional theory for classical fluids
6.2.1 Comparing quantum-DFT and classical-DFT
6.2.2 Classical-DFT and liquid state theory
6.2.3 Properties of inhomogeneous fluids from c-DFT
References
Chapter 7 Classical-DFT for electrolyte interfaces
7.1 Molecular models of electrolytes
7.2 Classical-DFT for point-charge electrolytes
7.2.1 Theory
7.2.2 Results
7.3 Classical-DFT for finite-size electrolytes
The Rosenfeld fundamental measures theory
The White Bear functional
The White Bear functional—mark II
Freezing of hard sphere fluids
Effects of finite size in electrolyte interfaces
7.4 Classical-DFT with correlations
7.4.1 Bulk fluid functionals for correlations
7.4.2 Interfacial fluid functionals for correlations
7.5 Classical-DFT with cohesive interactions
Bulk phase coexistence
Adsorption at a charged surface
7.6 Classical-DFT for systems with active surfaces
7.6.1 Surface chemistry
7.6.2 Surface electrostatics
7.7 Classical-DFT for water
7.7.1 A semi-primitive model for water
7.7.2 A ‘civilized’ model for water
7.8 Classical-DFT for electrokinetic systems
7.8.1 Steady state transport
7.8.2 A transport application—ion channel proteins
References
Chapter 8 Molecular properties of a single electric double layer
8.1 Classical density functional theory model of a single flat electric double layer
8.2 Solution structure in an electric double layer with surface charge regulation
8.3 Conclusions
References
Chapter 9 Ionic solvation effects and solvent–solvent interactions
9.1 Solvation of the potential determining ions
9.2 Solvation of the positive non-potential determining ions
9.3 Solvation of the negative non-potential determining ions
9.4 Effect of the solvent–solvent fluid interactions
9.5 Conclusions
References
Chapter 10 Surface solvation and non-Coulombic ion–surface interactions
10.1 Solvent–surface interactions. Solvophilic and solvophobic surfaces
10.2 Effect of the non-Coulombic interactions between the potential determining ions and the charged wall
10.3 Effect of the non-Coulombic positive ions—surface interactions
10.4 Effect of the non-Coulombic negative ions—surface interactions
10.5 Conclusions
References
Chapter 11 The potential distribution in the electric double layer and its relationship to the fluid charge
11.1 The Poisson equation for structured electrolyte solutions
11.2 Molecular interpretation of the Helmholtz planes, the Stern–Grahame layer, and the electrokinetic shear plane
11.3 Conclusions
References
Chapter 12 Electric double layers containing multivalent ions
12.1 Multivalent ion density profiles in the electric double layer
12.2 Effect of the non-potential-determining ions valency on the density profiles of the potential determining ions in the electric double layer
12.3 Non-Coulombic surface interactions, charge and potential distributions in the Stern–Grahame layer and beyond
12.4 Conclusions
References
Chapter 13 Ionic size effects
13.1 Ionic size variations and solution density
13.1.1 Positive non-PDI size variation effects
13.1.2 Negative non-PDI size variation effects
13.2 Conclusions
References
Chapter 14 Molecular simulation: methods
14.1 Background
14.2 Molecular dynamics methods
14.2.1 Hard sphere dynamics
14.2.2 Continuous potentials
14.2.3 Monte Carlo
14.3 The potential distribution theorem (PDT)
14.3.1 The PDT for an inhomogeneous fluid
14.3.2 Consequences of the uniformity the chemical potential
14.4 Simulation routes to the grand potential
References
Chapter 15 Molecular simulation: applications
15.1 Background
15.2 One-component plasma
15.3 Molten salts
15.4 Bulk electrolytes
15.4.1 Restricted primitive model
15.4.2 Confined civilized electrolytes and water potentials
References
Chapter 16 Numerical methods for classical-DFT
16.1 Solution methods
16.1.1 Review of system of equations
16.1.2 Nonlinear solvers I: Picard iterations
16.1.3 Nonlinear solver II: Newton’s method
16.1.4 Consequences of nonlocality in c-DFTs
16.1.5 A real space Newton solver for c-DFTs
16.1.6 A matrix-free Newton solver for c-DFTs
16.2 Algorithms for constructing phase diagrams
16.2.1 Arc-length continuation
16.2.2 Binodal and spinodal tracking
References
Chapter
References
Chapter
References
Chapter
Chapter
References
Chapter
References




پست ها تصادفی