توضیحاتی در مورد کتاب Practical Guide to ICP-MS and Other Atomic Spectroscopy Techniques: A Tutorial for Beginners (Practical Spectroscopy)
نام کتاب : Practical Guide to ICP-MS and Other Atomic Spectroscopy Techniques: A Tutorial for Beginners (Practical Spectroscopy)
ویرایش : 4
عنوان ترجمه شده به فارسی : راهنمای عملی ICP-MS و سایر تکنیکهای طیفسنجی اتمی: آموزشی برای مبتدیان (طیفسنجی عملی)
سری :
نویسندگان : Robert Thomas
ناشر : CRC Press
سال نشر : 2023
تعداد صفحات : 461
ISBN (شابک) : 1032035021 , 9781032035024
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 19 مگابایت
بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.
فهرست مطالب :
Cover
Half Title
Series
Title
Copyright
Contents
Foreword
Preface
Acknowledgments
About the Author
Chapter 1 An Overview of ICP Mass Spectrometry
1.1 Principles of Operation
Chapter 2 Principles of Ion Formation
2.1 Ion Formation
2.2 Natural Isotopes
Chapter 3 Sample Introduction
3.1 Aerosol Generation
3.2 Droplet Selection
3.3 Nebulizers
3.4 Concentric Design
3.5 Cross-Flow Design
3.6 Microflow Design
3.7 Spray Chambers
3.8 Double-Pass Spray Chamber
3.9 Cyclonic Spray Chamber
3.10 Aerosol Dilution
3.11 Final Thoughts
Chapter 4 Plasma Source
4.1 The Plasma Torch
4.2 Formation of an ICP Discharge
4.3 The Function of the RF Generator
4.4 Ionization of the Sample
Chapter 5 Interface Region
5.1 Capacitive Coupling
5.2 Ion Kinetic Energy
5.3 Benefits of a Well-Designed Interface
5.4 Final Thoughts
Chapter 6 Ion-Focusing System
6.1 Role of the Ion Optics
6.2 Dynamics of Ion Flow
6.3 Commercial Ion Optic Designs
Chapter 7 Mass Analyzers: Quadrupole Technology
7.1 Basic Principles of Operation
7.2 Quadrupole Performance Criteria
7.3 Resolution
7.4 Abundance Sensitivity
7.5 Benefit of Good Abundance Sensitivity
Chapter 8 Mass Analyzers: Double-Focusing Magnetic Sector Technology
8.1 Magnetic-Sector Mass Spectroscopy: A Historical Perspective
8.2 Use of Magnetic-Sector Technology for ICP-MS
8.3 Principles of Operation of Magnetic-Sector Technology
8.4 Resolving Power
8.5 Other Benefits of Magnetic-Sector Instrumentation
8.6 Simultaneous-Measurement Approach Using One Detector
8.7 Final Thoughts
Chapter 9 Mass Analyzers: Time-of-Flight Technology
9.1 Basic Principles of TOF Technology
9.2 Commercial Designs
9.3 Differences between Orthogonal and On-Axis TOF
9.4 Benefits of TOF Technology for ICP-MS
9.5 Rapid Transient Peak Analysis
9.6 Improved Precision
9.7 Rapid Data Acquisition
9.8 High-Speed Multi-Elemental Imaging Using Laser Ablation Coupled with TOF-ICP-MS
9.9 Laser Ablation Laser Ionization Time-of-Flight Mass Spectrometry
9.10 Final Thoughts
Chapter 10 Mass Analyzers: Collision/Reaction Cell and Interface Technology
10.1 Basic Principles of Collision/Reaction Cells
10.2 Different Collision/Reaction Cell Approaches
10.3 Collisional Mechanisms Using Nonreactive Gases and Kinetic Energy Discrimination
10.4 Reaction Mechanisms with Highly Reactive Gases and Discrimination by Selective Bandpass Mass Filtering
10.5 Dynamic Reaction Cell
10.6 Low-Mass Cutoff Collision/Reaction Cell
10.7 Using Reaction Mechanisms in a Collision Cell
10.8 The Universal Cell
10.9 The Collision/Reaction Interface
10.10 Detection Limit Comparison of Single-Quadrupole CRC Systems
10.11 Triple-Quadrupole Systems
10.12 M/S Mode
10.13 MS/MS Mode
10.14 On-Mass MS/MS Mode
10.15 Mass-Shift MS/MS Mode
10.16 Multi-Quad Systems
10.17 Difference Between a Triple and Multi Quad System
10.18 Final Thoughts
Chapter 11 Ion Detectors
11.1 Channel Electron Multiplier
11.2 Faraday Cup
11.3 Discrete-Dynode Electron Multiplier
11.4 Extending the Dynamic Range
11.5 Filtering the Ion Beam
11.6 Using Two Detectors
11.7 Using Two Scans with One Detector
11.8 Using One Scan with One Detector
11.9 Extending the Dynamic Range Using Pulse-Only Mode
11.10 Simultaneous Array Detectors
Chapter 12 Peak Measurement Protocol
12.1 Measurement Variables
12.2 Measurement Protocol
12.3 Optimization of Measurement Protocol
12.4 Multielement Data Quality Objectives
12.5 Data Quality Objectives for Single-Particle ICP-MS Studies
12.6 Final Thoughts
Chapter 13 Methods of Quantitation
13.1 Quantitative Analysis
13.2 External Standardization
13.3 Standard Additions
13.4 Addition Calibration
13.5 Semiquantitative Analysis
13.6 Isotope Dilution
13.7 Isotope Ratios
13.8 Internal Standardization
Chapter 14 Review of ICP-MS Interferences
14.1 Spectral Interferences
14.2 Oxides, Hydroxides, Hydrides and Doubly Charged Species
14.3 Isobaric Interferences
14.4 Ways to Compensate for Spectral Interferences
14.5 Mathematical Correction Equations
14.6 Cool/Cold Plasma Technology
14.7 Collision/Reaction Cells
14.8 High-Resolution Mass Analyzers
14.9 Matrix Interferences
14.10 Compensation Using Internal Standardization
14.11 Space Charge-Induced Matrix Interferences
Chapter 15 Routine Maintenance
15.1 Sample-Introduction System
15.2 Peristaltic Pump Tubing
15.3 Nebulizers
15.4 Spray Chamber
15.5 Plasma Torch
15.6 Interface Region
15.7 Ion Optics
15.8 Roughing Pumps
15.9 Air Filters
15.10 Other Components to Be Periodically Checked
15.11 The Detector
15.12 Turbomolecular Pumps
15.13 Mass Analyzer and Collision/Reaction Cell
15.14 Final Thoughts
Chapter 16 Sampling and Sample-Preparation Techniques
16.1 Collecting the Sample
16.2 Preparing the Sample
16.3 Cryogenic Grinding
16.4 Sample Dissolution
16.5 Reasons for Dissolving Samples
16.6 Digested Sample Weights
16.7 Microwave Digestion Considerations
16.8 Why Use Microwave Digestion?
16.9 Choice of Acids
16.10 Commercial Microwave Technology
16.11 Digestion Strategies
16.12 Fundamental Principles of Microwave Digestion Technology
16.13 Sequential Systems
16.14 Rotor-Based Technology
16.15 Single Reaction Chamber Technology
16.16 Single Cavity Mode
16.17 Principles of Single Cavity Mode
16.18 Automation with Single Cavity Mode
16.19 Sampling Procedures for Mercury
16.20 Reagent Blanks
16.21 Final Thoughts
Chapter 17 A Practical Guide to Reducing Errors and Contamination Using Plasma Spectrochemistry
17.1 Understanding Data Accuracy and Precision
17.2 Estimating Error
17.3 Types of Errors
17.4 Standards and Reference Materials
17.5 Using Standards and Reference Materials
17.6 Calibration Curves
17.7 Dynamic Range, Concentration and Error
17.8 Laboratory Sources of Error and Contamination
17.9 Sources of Laboratory Contamination and Error
17.10 Water Quality
17.11 Reagents
17.12 Laboratory Environment and Personnel
17.13 General Principles and Practices
Chapter 18 Performance- and Productivity-Enhancement Techniques
18.1 Performance-Enhancing Techniques Laser Ablation
18.2 Commercial Laser Ablation Systems for ICP-MS
18.3 Excimer Lasers
18.4 Benefits of Laser Ablation for ICP-MS
18.5 Optimum Laser Design Based on the Application Requirements
18.6 193-nm Laser Technology
18.7 Flow Injection Analysis
18.8 Electrothermal Vaporization (ETV)
18.9 Chilled Spray Chambers and Desolvation Devices
18.10 Water-Cooled and Peltier-Cooled Spray Chambers
18.11 Ultrasonic Nebulizers
18.12 Specialized Microflow Nebulizers with Desolvation Techniques
18.13 Direct Injection Nebulizers
18.14 Productivity-Enhancing Techniques
18.15 Faster Analysis Times
18.16 Automated In-Line Auto-Dilution and Auto-Calibration
18.17 Automated Sample Identification and Tracking
Chapter 19 Coupling ICP-MS with Chromatographic Separation Techniques for Speciation Studies
19.1 HPLC Coupled with ICP-MS
19.2 Chromatographic Separation Requirements
19.3 Ion Exchange Chromatography (IEC)
19.4 Reversed-Phase Ion-Pair Chromatography (RP-IPC)
19.5 Column Material
19.6 Isocratic or Gradient Elution
19.7 Sample-Introduction Requirements
19.8 Optimization of ICP-MS Parameters
19.9 Compatibility with Organic Solvents
19.10 Collision/Reaction Cell or Interface Capability
19.11 Optimization of Peak Measurement Protocol
19.12 Full Software Control and Integration
19.13 Final Thoughts
Chapter 20 Overview of the ICP-MS Application Landscape
20.1 Application Capability
20.2 Analytical Challenges
20.3 Major Trends
20.4 What is Driving ICP-MS Development?
20.5 Future Direction
Chapter 21 Fundamental Principles and Applications of Atomic Absorption and Atomic Fluorescence
21.1 Flame AAS
21.2 Advantages of FLAAS
21.3 FLAAS Interferences and Their Control
21.4 Disadvantages of FLAAS
21.5 Graphite-Furnace AAS
21.6 Advantages of GFAAS
21.7 GFAAS Interferences and Their Control
21.8 Advantages of GFAAS
21.9 Disadvantages of GFAAS
21.10 Vapor-Generation AAS
21.11 Advantages of Cold-Vapor AAS
21.12 Disadvantages of Cold-Vapor AAS
21.13 Hydride-Generation AAS
21.14 Advantages of Hydride-Generation AAS
21.15 Disadvantages of Hydride-Generation AAS
21.16 Hyphenated Techniques
21.17 Atomic Fluorescence
21.18 Advantages and Disadvantages of AFS
21.19 Final Thoughts
Chapter 22 Fundamental Principles, Method Development and Operational Requirements of ICP-Optical Emission Spectroscopy
22.1 Basic Definitions
22.2 Principles of Emission
22.3 Atomic and Ionic Emission
22.4 Instrumentation
22.5 Sample Introduction
22.6 Aerosol Generation
22.7 Nebulizers
22.8 Spray Chambers
22.9 Torches
22.10 Spectrometers
22.11 Fore-Optics
22.12 Optical Designs
22.13 Detectors
22.14 Historical Perspective
22.15 Photomultiplier Tubes
22.16 Photodiode Arrays
22.17 Charge-Transfer Devices
22.18 Charge-Coupled Devices
22.19 Charge-Injection Devices
22.20 Analytical Performance
22.21 Dependence on Environmental Operating Conditions
22.22 Exhaust Requirements
22.23 Electrical Requirements
22.24 Temperature and Pressure Requirements
22.25 Maintenance
22.26 Dependence on Plasma Operating Conditions
22.27 RF Power
22.28 Plasma Gases
22.29 Pump Settings
22.30 Plasma Viewing Height
22.31 Precision and Accuracy
22.32 Detection Limits
22.33 Limit of Quantitation
22.34 Background Equivalent Concentration
22.35 Sensitivity
22.36 Method-Development Considerations
22.37 Analytical-Wavelength Considerations
22.38 Interferences
22.39 Physical Interferences
22.40 Chemical Interferences
22.41 Spectral Interferences
22.42 Data Acquisition
22.43 Method Validation
22.44 Final Thoughts
Chapter 23 Other Complementary Atomic Spectroscopy Techniques
23.1 X-Ray Fluorescence
23.2 XRF Instrumental Configuration
23.3 Quantitation by XRF
23.4 XRF Detection Limits
23.5 Sample Preparation for XRF
23.6 X-Ray Diffraction
23.7 Laser Induced Breakdown Spectroscopy
23.8 LIBS Fundamental Principles
23.9 LIBS Capabilities
23.10 LIBS Application Areas
23.11 LIBS Detection Capability
23.12 LIBS on Mars
23.13 Microwave Induced Plasma Optical Emission Spectroscopy
23.14 Basic Principles of the MP-AES Technology
23.15 Benefits of MIP-AES
23.16 Typical Applications of MP-AES
23.17 Laser Ablation Laser Ionization Time-of-Flight Mass Spectrometry
23.18 Massbox
23.19 Basic Principles LALI-TOF-MS
23.20 Matrix Effects
23.21 Diffusion and Transport
23.22 Interferences
23.23 Transmission Efficiency
23.24 Inorganic and Organic Analysis
23.25 Operational Use
23.26 User Interface
23.27 Performance Capabilities
23.28 Final Thoughts
Chapter 24 Performance Characteristics of Common Atomic Spectroscopy Techniques
24.1 Flame Atomic Absorption
24.2 Electrothermal Atomization
24.3 Hydride/Vapor Generation AA
24.4 Atomic Fluorescence
24.5 Radial ICP-OES
24.6 Axial ICP-OES
24.7 ICP-MS
24.8 Comparison Highlights
Chapter 25 Running Costs of Common AS Techniques
25.1 Gases
25.1.1 FAA
25.1.2 Air—C2H2
25.1.2.1 ETA
25.1.2.2 ICP-OES and ICP-MS
25.2 Electricity
25.2.1 FAA
25.2.2 ETA
25.2.3 ICP-OES and ICP-MS
25.3 Consumables
25.3.1 FAA
25.3.2 ETA
25.3.3 ICP-OES
25.3.4 ICP-MS
25.4 Cost per Sample
25.4.1 FAA
25.4.2 ETA
25.4.3 ICP-OES
25.4.4 ICP-MS
25.5 Running Costs of Atomic Fluorescence
25.6 Final Thoughts
Chapter 26 How to Evaluate an ICP Mass Spectrometer: Some Important Analytical Considerations
26.1 Evaluation Objectives
26.1.1 Analytical Performance
26.1.1.1 Detection Capability
26.1.1.2 Precision
26.1.1.3 Isotope Ratio Precision
26.1.1.4 Accuracy
26.1.1.5 Dynamic Range
26.1.1.6 Interference Reduction
26.1.1.6.1 Reducing Spectral Interferences
26.1.1.6.2 Resolution Improvement
26.1.1.6.3 Higher Abundance Sensitivity Specifications
26.1.1.6.4 Use of Cool Plasma Technology
26.1.1.6.5 Using Collision/Reaction Cell and Interface Technology
26.1.1.7 Reduction of Matrix-Induced Interferences
26.1.1.8 Sample Throughput
26.1.1.9 Transient Signal Capability
26.1.1.10 Single-Particle ICP-MS Transient Signals
26.1.2 Usability Aspects
26.1.2.1 Ease of Use
26.1.2.2 Routine Maintenance
26.1.2.3 Compatibility with Alternative Sampling Accessories
26.1.2.4 Installation of Instrument
26.1.2.5 Technical Support
26.1.2.6 Training
26.1.3 Reliability Issues
26.1.3.1 Service Support
26.2 Financial Considerations
26.3 The Evaluation Process: A Summary
Chapter 27 Glossary of Terms Used in Atomic Spectroscopy
Chapter 28 Useful Contact Information
Index