Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering – A Manual for Study and Practice

دانلود کتاب Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering – A Manual for Study and Practice

40000 تومان موجود

کتاب اسمز معکوس نمک زدایی آب دریا جلد 2: برنامه ریزی، طراحی فرآیند و مهندسی - راهنمای مطالعه و تمرین نسخه زبان اصلی

دانلود کتاب اسمز معکوس نمک زدایی آب دریا جلد 2: برنامه ریزی، طراحی فرآیند و مهندسی - راهنمای مطالعه و تمرین بعد از پرداخت مقدور خواهد بود
توضیحات کتاب در بخش جزئیات آمده است و می توانید موارد را مشاهده فرمایید


این کتاب نسخه اصلی می باشد و به زبان فارسی نیست.


امتیاز شما به این کتاب (حداقل 1 و حداکثر 5):

امتیاز کاربران به این کتاب:        تعداد رای دهنده ها: 9


توضیحاتی در مورد کتاب Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering – A Manual for Study and Practice

نام کتاب : Reverse Osmosis Seawater Desalination Volume 2: Planning, Process Design and Engineering – A Manual for Study and Practice
عنوان ترجمه شده به فارسی : اسمز معکوس نمک زدایی آب دریا جلد 2: برنامه ریزی، طراحی فرآیند و مهندسی - راهنمای مطالعه و تمرین
سری :
نویسندگان :
ناشر : Springer
سال نشر : 2022
تعداد صفحات : 641
ISBN (شابک) : 3030819264 , 9783030819262
زبان کتاب : English
فرمت کتاب : pdf
حجم کتاب : 16 مگابایت



بعد از تکمیل فرایند پرداخت لینک دانلود کتاب ارائه خواهد شد. درصورت ثبت نام و ورود به حساب کاربری خود قادر خواهید بود لیست کتاب های خریداری شده را مشاهده فرمایید.


فهرست مطالب :


Preface and Acknowledgement
Contents
1: Introduction and Overview
2: Pretreatment
2.1 Fouling
2.1.1 Foulants in Seawater
2.1.2 Kinds of Fouling
2.1.3 Methods for Fouling Potential Testing
2.2 Pretreatment Measures, Options, and Configurations
2.2.1 Disinfection
2.2.1.1 Disinfectants´ Chemistry
2.2.1.1.1 Chlorination Chemistry in Seawater
2.2.1.1.2 Chlorine Dioxide Chemistry
2.2.1.1.3 Chloramine Chemistry
2.2.1.2 Efficacy of Disinfectants
2.2.1.2.1 Kinetic of Disinfection and Efficacy of Disinfectants
2.2.1.3 Chlorine and Hypochlorite Dosing Systems
2.2.1.3.1 Chlorine Storage and Dosing
2.2.1.3.2 Hypochlorite Solution, Storage, and Dosing
2.2.1.3.3 On-Site Hypochlorite Generation, Storage, and Dosing
2.2.1.4 Chlorine Disinfection: Mode of Dosing, Dosing Rates, Dosing System Sizing, Chlorine Consumption, and Power Demand
2.2.1.4.1 Mode of Dosing and Cl2 Dosing Rates
2.2.1.4.2 Chlorine Gas Dosing: Dosing System Sizing, Cl2 Consumption, and Power Demand
2.2.1.4.3 NaOCl Solution Dosing: Dosing System Sizing, NaOCl Solution Consumption, and Power Demand
2.2.1.4.4 NaOCl On-Site Production: Seawater Electrolysis and Dosing System Sizing and Power Demand
2.2.2 Pretreatment Process Options for Solids and Colloidals Removal
2.2.2.1 Selection of Pretreatment Process Configurations
2.2.2.1.1 Properties of Pretreatment Processes
2.2.2.1.2 Quality of Seawater and Selection of Appropriate Pretreatment Process Configurations
2.2.2.1.3 Criteria for Selection of Conventional or Membrane Configurations of Pretreatment
2.3 Pretreatment Processes Unit Operations
2.3.1 Coagulation and Flocculation
2.3.1.1 Coagulant and Flocculant Chemistry
2.3.1.1.1 Coagulant Chemistry
2.3.1.1.2 Flocculants and Their Application
2.3.1.1.3 Dosing Conditions of Coagulant and Flocculant and Rate of Solids Formation
Dosing Conditions of Coagulant and Flocculant
Rate of Solids Formation by Coagulant
2.3.1.1.4 pH Adjustment for Flocculation Optimization
2.3.1.2 Basic Principles of Coagulation and Flocculation Process Design
2.3.1.3 Mixing and Flocculation Devices
2.3.1.4 Mixing and Flocculation Process Design
2.3.1.4.1 Static Mixer
2.3.1.4.2 Mixing and Flocculation Basins
2.3.2 Sedimentation
2.3.2.1 Sedimentation Basics
2.3.2.2 Sedimentation Devices
2.3.2.3 Sedimentation Process Design
2.3.2.3.1 Lamella Separation System
2.3.2.3.2 Sludge Amount and Volume: Treated Water Recovery Rate
2.3.2.3.3 Power Demand of Sedimentation System
2.3.3 Flotation
2.3.3.1 Flotation Basics
2.3.3.2 Flotation Devices
2.3.3.3 Flotation Process Design
2.3.3.3.1 Process System Sizing
2.3.3.3.2 Sludge Amount and Volume: Treated Water Recovery Rate
2.3.3.3.3 Power Demand of Flotation System
2.3.4 Granular Media Filtration
2.3.4.1 Granular Media Filtration Basics
2.3.4.1.1 Filter Media Characteristics
2.3.4.1.2 Mathematic Modelling of Filtration Parameters
Head Loss of Clean and Loaded Filter Bed
Filter Backwash Velocity, Necessary Pressure of Backwash Water, and Filter Material Selection
2.3.4.2 Granular Media Filtration Devices
2.3.4.3 Granular Media Filtration Filter Design
2.3.4.3.1 Filter System and Filter Unit Sizing
Number of Filters and Unit Capacity
Filter Material Amount, Filter Bed Height, and Shell Height
Filter Backwash Design and Filtrate Recovery Rate
2.3.4.3.2 Power Demand of Filtration System
2.3.5 Membrane Filtration
2.3.5.1 Membrane Filtration Basics
2.3.5.1.1 Membrane Material Properties
2.3.5.1.2 Modes of Membrane Filtration and Type of Membranes
2.3.5.1.3 Basic Equations for Dead-End Membrane Filtration
2.3.5.2 Membrane Filtration Devices and Systems
2.3.5.3 Membrane Process Design
2.3.5.3.1 Membrane Filtration Area, Number of Membrane Modules, Membrane Flux, and Feed Pressure
2.3.5.3.2 Physical Backwash (BW), Chemically Enhanced Backwash (CEB), Cleaning-in-Place (CIP), and Membrane Preservation
Physical Backwash (BW)
Chemically Enhanced Backwash (CEB)
Cleaning-in-Place (CIP)
Membrane Preservation
2.3.5.3.3 Membrane Integrity Testing
2.3.5.3.4 Filtrate Recovery Rate and Power Demand of Membrane Filtration
Filtrate Recovery Rate
Power Demand of Membrane Filter System
2.3.5.3.5 Ultrafiltration Membrane System Design with Membrane Manufacturer Design Software
Structure and Input/Output Parameter of Membrane Filter Design Software
Annexes
2.A1 Static Mixer Calculation
2.A2 Mixing and Coagulation Basin Calculation
2.A3 Inclined Plate and Sedimentation System Design
2.A4 Dissolved Air Flotation Design
2.A5 Open Gravity Filter Floc Filtration Design
2.A6 Membrane Filtration Design
References
3: Post-Treatment
3.1 Seawater RO Permeate Quality and Factors of Influence
3.2 Determination of SWRO Product Water Composition Values
3.2.1 International and National Drinking Water Guidelines
3.2.2 Irrigation Water Guidelines and Recommendations
3.2.3 Calcium Carbonate Saturation Indexes, Corrosion Indexes, and Guidelines
3.2.3.1 Calcium Carbonate Saturation Indexes
3.2.3.1.1 Saturation Index, Langelier Saturation Index, and Calcite Saturation
3.2.3.1.2 Calcium Carbonate Precipitation Potential and Calcite Dissolving Capacity
3.2.3.1.3 Target Values for the Calcium Carbonate Saturation Indexes in Product Water of SWRO
3.2.3.1.4 Software Programs for Calculation of Calcium Carbonate Saturation Indexes
3.2.3.2 Corrosion Indexes and Guidelines
3.2.3.2.1 Corrosion Indexes
3.2.3.2.2 Corrosion Guidelines
3.3 Product Water Target Values and Guidelines
3.3.1 Product Water Guidelines and Practised Range of Values
3.4 Post-Treatment Configuration and Treatment Systems
3.4.1 Post-Desalination: Function and Design
3.4.2 Remineralization/Alkalinization: Possible Processes and Process Design
3.4.2.1 Carbon Dioxide Supply and Production
3.4.2.2 Lime/CO2, Limestone/CO2, Limestone/H2SO4, and Dolomite/CO2 Processes: Systems, Devices, and Process Design
3.4.2.2.1 Lime/CO2: Process
3.4.2.2.2 CaCO3/CO2, CaCO3/H2SO4 and MgO*CaCO3/CO2 processes
3.4.2.3 Composition and Properties of Post-Desalinated and Remineralized RO Product Water
3.4.2.4 Remineralization Process Modifications for Increase of Magnesium Content in SWRO Product Water
3.4.3 Conditioning: Dosing of Corrosion Inhibitors and Magnesium Compounds and Fluoridation
3.4.3.1 Corrosion Inhibitor Dosing
3.4.3.2 Magnesium Compound Dosing
3.4.3.3 Fluoride Dosing
3.4.4 Disinfection
3.4.4.1 Disinfectant Properties and Selection
3.4.4.2 Disinfection Process Design
3.4.4.2.1 Selection of Disinfectant for Primary and Secondary Disinfection and Calculation of Disinfection Dosing and Residual...
3.4.4.2.2 Calculation of Effective Hourly Demand and Dosing Flow of Primary and Secondary Disinfectants
3.5 Power Demand of Post-Treatment Systems and Drinking Water Supply
3.5.1 Post-Treatment Power Demand
3.5.1.1 Post-Desalination Power Demand
3.5.1.2 Remineralization/Alkalinization Power Demand
3.5.1.2.1 Power Demand for CO2 Supply
3.5.1.2.2 Power Demand for the Lime, Limestone, and Dolomite Process Part
3.5.1.3 Conditioning and Disinfection Power Demand
3.5.1.3.1 Power Demand of Conditioning
3.5.1.3.2 Power Demand of Disinfection
3.5.2 Design and Power Demand of Product Water Supply
Annexes
3.A1 Post-Treatment: Remineralization/Alkalinization-Lime/CO2 Process Design
3.A2 Post-Treatment: Remineralization/Alkalinization-Limestone/CO2 Process Design
3.A3 Post-Treatment: Disinfection Process Design-Primary and Secondary Disinfection
References
4: Seawater Extraction and Supply and Concentrate Discharge
4.1 Seawater Extraction and Supply
4.1.1 Surface Water (Direct) Intakes
4.1.1.1 Open Intake Channel or Lagoon Type
4.1.1.2 Submerged Pipe/Tunnel Active Screening Type
4.1.1.3 Submerged Pipe Passive Screening Type
4.1.2 Indirect (Soil Filtration) Intakes
4.1.2.1 Vertical Intakes (Beach Wells)
4.1.2.2 Horizontal Intakes
4.1.2.2.1 Radial Collector Wells (Ranney-Type Wells)
4.1.2.2.2 Horizontal Directionally Drilled Wells
4.1.2.3 Beach Galleries and Seabed Filters
4.1.3 Assessment and Selection of Intake Withdrawal Systems
4.1.4 SWRO: Seawater Supply Pumping Facilities and Intake Power Demand
4.1.4.1 Seawater Supply Pumping
4.1.4.2 Power Demand of Intake Systems
4.2 Concentrate and Wastewater Discharge
4.2.1 Discharge Flow of SWRO
4.2.2 Salt Content of SWRO Discharge
4.2.3 Discharge Diffuser Systems and Their Design
4.2.3.1 Software Systems for Modelling of Near-Field and Far-Field Zone Conditions
4.2.3.1.1 Near- and Intermediate-Field Zones
4.2.3.1.2 Far-Field Zone
Annexes
4.A1 SWRO Outfall Discharge: Diffuser System Conceptual Design
References
5: SWRO Effluents and Residues: Composition, Environmental Impacts, Discharge and Disposal Regulations, and Treatments Measures
5.1 Overview of SWRO Plant Effluents and Solid Residues
5.1.1 SWRO Processing Stages and Wastes Produced During Their Operation
5.2 SWRO Effluents
5.2.1 Composition of Main Discharges
5.2.1.1 Reverse Osmosis Concentrate
5.2.1.2 Backwash Water of Pretreatment Filtration Systems
5.2.1.2.1 Physical Backwash (PB)
5.2.1.2.2 Chemical Enhanced Backwash (CEB)
5.2.1.3 Cleaning-in-Place (CIP)
5.2.1.3.1 Reverse Osmosis Membranes
5.2.1.3.2 Membrane Filtration Membranes
5.2.1.4 Membrane Preservation
5.2.1.5 Posttreatment Discharges
5.2.1.5.1 Lime Process
5.2.1.5.2 Limestone or Dolomite Process
5.2.1.6 Sludge of Sedimentation/Flotation Systems in Pretreatment
5.2.2 Environmental Impacts of Constituents of Discharges and Regulations for Discharge
5.2.2.1 Environmental Impacts and Their Mitigation
5.2.2.1.1 Reverse Osmosis Concentrates
5.2.2.1.2 Backwash Wastewater from Pretreatment Filtration
5.2.2.1.3 Cleaning -in-Place (CIP) Wastewater
5.2.2.1.4 Membrane Preservation Wastewater
5.2.2.2 Regulations for Discharge of Concentrate and Wastewater
5.2.2.2.1 Discharge Into a Public Sewer Network
5.2.2.2.2 Discharge to the Sea
5.2.3 SWRO Wastewater Treatment Installations and Their Design
5.2.3.1 Wastewater Treatment Plant Configuration and Equipment
5.2.3.2 SWRO Wastewater Treatment Plant Design
5.2.3.2.1 Average and Design Wastewater Flow and Volume of Wastewater Basin
5.2.3.2.2 Cleaning and Preservation Wastewater Storage and Treatment
5.2.3.2.3 Flocculation and Sedimentation of the SWRO Wastewater
5.2.3.2.4 Sludge Dewatering and Disposal
5.2.3.3 SWRO Wastewater Treatment Plant Power Demand and Energy Consumption
5.3 SWRO Solid Residues
5.3.1 Regulations for Disposal of Solid Residues and Wastes
5.3.2 Types of SWRO Residues, Their Composition, and Waste Management Paths
5.3.2.1 Seawater Screening Debris
5.3.2.2 Residues from Pretreatment Solids Separation and Posttreatment
5.3.2.3 Spent Membrane Elements from Membrane Replacement in Membrane Filtration and RO
5.3.2.3.1 Reduction of Membrane Element Wastes
5.3.2.3.2 Reuse of Membrane Elements
5.3.2.3.3 Recycling of Membrane Element Materials
5.3.2.4 Spent Cartridge Filter Elements
5.3.2.5 Loss and Replacement of Filter Material of Granular Media Filters
References
6: Materials for SWRO Plants
6.1 Part-Streams of SWRO Plant: Medium, Flow, Pressure, and Composition
6.2 Selection of Materials
6.2.1 Stainless Steel
6.2.2 Unprotected, Coated, and Ebonite-Lined Mild Steel
6.2.3 FRP/GRP and Other Plastics
6.2.4 Concrete with or Without Protective Coating
References
7: SWRO Plant Operation Organization, Monitoring, and Instrumentation
7.1 Tasks and Functions of an SWRO Operational I&C System
7.2 Structure of a DCS/SCADA Operation I&C System
7.3 Instrumentation and Monitoring
7.3.1 Online Instrumentation and Monitoring
7.3.2 Process Monitoring by Water Sampling and Laboratory Analyses
7.3.2.1 Seawater, RO Feed, Concentrate, and Product Water Analyses
7.3.2.2 SWRO Product Water/Drinking Water Analyses
7.3.2.3 SWRO Waste Water and Outfall Analyses
7.4 Mode and Measures for SWRO Process Water Quality Management
Reference
8: Energy Consumption of an SWRO Plant
8.1 Energy Consuming Components of an SWRO Plant
8.2 Energy Consumption Calculation and Optimization Possibilities in Process Design
8.2.1 Reverse Osmosis Tract
8.2.1.1 Pressure and Salt Rejection Conditions and Membrane Design
8.2.1.1.1 Pressure and Membrane Salt Rejection Conditions
Pressure Conditions
Salt Passage and Rejection Conditions
8.2.1.1.2 Membrane System and Membrane Module Design and Optimization
Selection of Membrane Types for RO1 and RO2
Selection of Average Specific Product Flux Values for RO1 and RO2
Number of Serial Membrane Elements in the Pressure Vessels of the Membrane Modules
Selection of the Average Membrane Lifetime (AMLT) and the Replacement Rate of the Membrane Elements in RO1 and RO2
Application of the Split-Flow Mode in the Seawater Desalination Stage RO1
8.2.1.2 RO System Configuration: Pump Systems and RO Arrays
8.2.1.2.1 Type and Size of Pumps and their Mode of Operation
8.2.1.2.2 RO Array Configuration: Train and Centre Modes
8.2.2 Pretreatment
8.2.3 SWRO Wastewater Treatment and Posttreatment
8.2.3.1 Wastewater Treatment Plant
8.2.3.2 Posttreatment
8.3 Specific SWRO Energy Consumption: Plant Configuration Modelling and Conclusions
8.3.1 SWRO Plant Configuration Modelling
8.3.1.1 Design Data for Input into Plant Modelling
8.3.1.2 SWRO Plant Modelling Approach
8.3.1.3 SWRO Plant Modelling Results
8.3.1.4 SWRO Plant Modelling Summary and Conclusions
References
9: Economics, Life Cycle Cost, and Water Production Cost
9.1 Capital Cost: CAPEX
9.2 Operation and Management Cost: OPEX
9.2.1 Variable OPEX
9.2.1.1 Energy Cost
9.2.1.2 Cost of Chemicals
9.2.1.3 Membrane, Cartridge, and Filter Medium Replacement
9.2.1.4 Waste and Residues Disposal
9.2.2 Fixed OPEX
9.3 Determination of Capital and O&M Costs during the Various Phases of SWRO Design
9.4 SWRO Contractual Approaches, Life Cycle Cost, and Specific Water Production Cost
9.4.1 Life Cycle Cost and Levelized and Escalated Specific Water Production Cost
9.4.2 SWRO Contractual Approaches and Specific Water Production Cost
9.4.2.1 Contractual Approaches
9.4.2.2 Specific Water Production Costs
Reference




پست ها تصادفی